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Abstract

Background: All-trans retinoic acid (ATRA) has revolutionized the
management of acute promyelocytic leukemia (APL) and has gener-
ated interest in differentiation therapy as means to reduce reliance
on conventional chemotherapy in other subtypes of acute myeloid
leukemia (AML). However, the precise relationship between immu-
nophenotypic changes and morphological maturation during ATRA-
induced differentiation remains poorly defined. This study aimed to
investigate the phenotypic and morphological progression of HL60
cells treated with ATRA and to establish quantitative correlations be-
tween surface marker expression and cell morphology.

Methods: HL60 cells were treated with 1 uM ATRA. Expression
of myeloid and monocytic surface markers (CD38, CD45, CD11b,
human leukocyte antigen (HLA)-DR, CD15, CD13, CD33) was
analyzed in parallel with morphological assessment using Giemsa-
stained cytospin preparations. Pearson correlation analysis was
applied to link surface marker expression with specific stages of
granulocytic differentiation. In addition, the mRNA expression of
myeloid-specific transcription factors PU.I, RUNXI and CEBPa
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was evaluated following ATRA treatment.

Results: ATRA induced a stepwise maturation of HL60 cells from
promyelocytes through metamyelocytes and band forms to segment-
ed neutrophils, recapitulating physiological granulopoiesis. Acquisi-
tion of mature morphology correlated positively with CD38, CD45,
CDl11b, HLA-DR, and CD15 expression, while CD13 and CD33
were progressively downregulated and inversely correlated with dif-
ferentiation. Importantly, this study established quantitative links
between distinct immunophenotypic signatures and defined morpho-
logical stages, a relationship not clearly demonstrated in previous
HL60 studies. Concomitantly, ATRA upregulated transcription fac-
tors PU.1, RUNXI and CEBPa, supporting the coordinated regulation
of phenotypic and morphological maturation.

Conclusions: Our study reveals that ATRA not only promotes broad
differentiation of HL60 cells but also orchestrates a targeted repro-
gramming that synchronizes morphological maturation with distinct
immunophenotypic shifts, mediated by transcriptional upregulation
of PU.1, RUNXI and CEBPa. This integrative profiling - linking mo-
lecular, functional, and morphological parameters - offers a nuanced
understanding of the differentiation trajectory and establishes a robust
framework for assessing ATRA and other differentiation-based strate-
gies in AML. By delineating these correlations, our findings pave the
way for therapeutic approaches that leverage controlled leukemic cell
maturation, potentially minimizing the cytotoxic burden associated
with conventional chemotherapy.
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Introduction

Acute myeloid leukemia (AML) is characterized by impaired
cell differentiation and uncontrolled proliferation, resulting in
the accumulation of immature myeloid cells in the bone mar-
row and peripheral blood [1]. Despite continuous advance-
ments in treatment, AML remains associated with high mortal-
ity rates across all age groups [2]. Standard AML therapy relies
on chemotherapeutic agents that induce apoptosis in rapidly
dividing cells, but these treatments are nonspecific and often
result in severe side effects, such as hair loss and immunosup-
pression [3].
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The introduction of all-trans retinoic acid (ATRA), a dif-
ferentiation agent, revolutionized the treatment of acute pro-
myelocytic leukemia (APL), a subtype of AML. ATRA, in com-
bination with chemotherapy, has become the standard regimen
for treating APL, raising hopes for reducing or even replacing
chemotherapy in patients with APL and potentially other AML
subtypes [4]. ATRA, the bioactive metabolite of vitamin A,
plays a key role in regulating cellular differentiation by activat-
ing retinoic acid receptor-mediated signaling pathways.

APL is cytogenetically defined by reciprocal transloca-
tion t(15;17), which produces the PML-RARa fusion protein,
a critical driver of differentiation arrest at the promyelocyte
stage [5, 6]. Although the HL60 cell line was originally de-
rived from a patient with APL, subsequent karyotyping reclas-
sified it as an AML subtype known as AML with maturation
(formerly AML M2) [7, 8]. Notably, HL60 cells lack t(15;17)
translocation, the PML-RARa fusion protein, and the tumor
suppressor gene p53 [9, 10]. Nevertheless, HL60 cells retain
functional RARa receptors and remain responsive to ATRA-
induced differentiation [11, 12]. As a result, HL60 cells are
widely used as an in vitro model to study myeloid differentia-
tion, molecular mechanisms, and therapeutic interventions in
leukemia [13].

In this study, we aimed to investigate how ATRA promotes
the differentiation of HL60 promyelocytes into mature granu-
locytes by examining changes in both cell surface marker ex-
pression and cellular morphology, as well as the correlations
between these parameters. Using a panel of CD markers as-
sociated with myeloid and monocytic maturation, we assessed
the differentiation process and compared these findings with
the morphological changes observed in Giemsa-stained slides.
Our results demonstrated that ATRA treatment transformed
a heterogeneous population of promyelocytes into a mature
granulocyte population resembling a normal physiological
distribution, with neutrophils comprising nearly 60% of the
cells. We observed consistent upregulation of CD38, CDI15,
human leukocyte antigen (HLA)-DR, and CD45, with a grad-
ual increase in CD11b over time. Furthermore, we identified a
negative correlation between the expressions of CD38, CD15,
CD45, and CD11b and the number of promyelocytes and a
positive correlation with the number of mature neutrophils.

Materials and Methods
Maintaining HL60 cells

The HL-60 cell line was originally established from the periph-
eral blood of a patient with APL. The cells were maintained in
complete growth medium consisting of RPMI (Sigma) supple-
mented with 10% fetal bovine serum (FBS) (Sigma-Aldrich,
Inc., Missouri, St. Louis, MO, USA), 1% penicillin/strepto-
mycin (P/S) (Sigma-Aldrich, Inc., Missouri, St. Louis, MO,
USA), and 1% L-glutamine. The cell suspension was incubat-
ed at 37 °C in a 5% CO, incubator. Every 2 to 3 days, or when
the count reached 1 x 10° cells/mL, the cells were pelleted via
centrifugation at 300 x g for 5 min, and 2 x 103 viable cells/mL
were resuspended in complete growth medium.

Differentiation of HL60 cells by ATRA

ATRA (Cat. No. PHR 1187, 100 mg, Sigma-Aldrich, Inc., Mis-
souri, St. Louis, MO, USA) (100 mg) was first reconstituted
in DMSO to obtain a final stock concentration of 40 mg/mL.
This stock was further diluted in complete growth media to a
final working concentration of 1 uM, as recommended previ-
ously [14]. First, HL60 cells were seeded in six-well plates
at concentrations ranging from 2 x 10° to 5 x 10° cells/mL.
Media containing 1 uM ATRA were added on days 1, 3, and 5
post-treatments. The number of cells was maintained between
2 x 103 and 5 x 10° throughout the differentiation assay.

Flow cytometry analysis

HL60 cells were harvested for flow cytometry analysis on
days 5, 6, and 7 post-ATRA differentiation for ATRA-treated
cells and control cells. A single-cell suspension was prepared
by 5 min of centrifugation at 400 x g, and 1 x 10¢ cells/mL
were resuspended in 0.5 mL of fluorescence-activated cell
sorting (FACS) buffer (2% fetal bovine serum (FBS) in phos-
phate-buffered saline (PBS) without Ca** or Mg*"). For each
staining reaction, 100 pL of the cell suspension was stained
with the following antibodies: 0.5 pg of fluorescein isothio-
cyanate (FITC) anti-CD64 (IM1604U; Beckman Coulter
Inc., USA), 0.5 pg of FITC anti-CD15 (IM1423U; Beckman
Coulter Inc., USA), 0.0312 pg of phycoerythrin (PE) anti-
CD38 (A07779; Beckman Coulter Inc., USA), 0.075 pg of
energy coupled dye (ECD) anti-CD34 (IM2709U; Beckman
Coulter), 0.0312 pg of ECD anti-CD14 (IM2707U; Beck-
man Coulter Inc., USA), 0.375 pg of phycoerythrin-cyanine
5.5 (PC5.5) anti-CD13 (A79389; Beckman Coulter Inc.,
USA), 0.000975 ng of PC5.5 anti-HLADR (B20024; Beck-
man Coulter Inc., USA), 0.5 pug of phycoerythrin-cyanine 7
(PC7) anti-CD45 (IM3548; Beckman Coulter Inc., USA),
0.0625 pg of allophycocyanin (APC) anti-CD11b (A87782;
Beckman Coulter Inc., USA) or 0.0312 pg of APC anti-
CD33 (IM2471; Beckman Coulter Inc., USA). The viability
of HL60 cells after treatment was determined via the use of
7-aminoactinomycin D (7-AAD) (A07704; Beckman Coul-
ter Inc., USA). Flow cytometry was performed via a Navios
flow cytometer (Beckman Coulter Inc., USA), and the results
were analyzed via Beckman Coulter-Navios software (Beck-
man Coulter Inc., USA).

Preparation of cytospin and Giemsa staining for morphol-
ogy

On days 5, 6, and 7 post-treatment, 1 mL of treated or untreat-
ed cells was collected via a Cytotek kit (Sakura Finetek Inc.,
Torrance, CA, USA). In brief, two drops of cells were added
to the chamber, covered with parafilm, and centrifuged at 800
revolutions per minute (rpm) for 10 min. After the cells were
dried, they were stained with Giemsa stain (Sigma-Aldrich,
Inc., Missouri, St. Louis, MO, USA) via a Sysmex SP-10 ma-
chine. The slides were inspected via microscopy (B382PLi-
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Figure 1. Dot plot analysis of HL-60 cell populations following ATRA treatment. (a) Representative dot plots showing R1 (red;
immature cells) and R2 (gray; mature cells) populations in untreated HL-60 control cells (top row) and ATRA-treated HL-60
cells (bottom row). (b) Mean percentages of R1 and R2 populations in untreated control HL-60 cells (black bars) and ATRA-
treated cells (gray bars). Data represent n = 3; error bars indicate the standard error of the mean (SEM). Statistical significance
is denoted as **P < 0.05, and ***P < 0.005. (c) Representative dot plots showing 7-AAD-negative (viable) and 7-AAD-positive
(nonviable; red) cell populations in HL-60 control cells (top row) and ATRA-treated HL-60 cells (bottom row). The percentage of
7-AAD-positive cells is shown in blue above the gate. (d) Mean percentage of 7-AAD-positive cells in untreated control HL-60
cells (black bars) and ATRA-treated cells (gray bars). Data represent n = 3; error bars indicate SEM. SSC-A: side scatter area;
FSC-A: forward scatter area; 7-AAD: 7-aminoactinomycin D; ATRA: all-trans retinoic acid.

ALC-Optika Microscope) (OPTIKA S.rl., Via Rigla, BG,
Italy) at x 10 and x 40 magnifications.

Quantitative reverse transcription polymerase chain reac-
tion (QRT-PCR) analysis of transcription factors

Total RNA was extracted from HL-60 cells treated with
ATRA (days 1, 3 and 5) via the RNeasy Kit (Qiagen), fol-
lowed by DNase I treatment (Qiagen). The RNA concen-
tration was quantified via a NanoDrop spectrophotometer.
cDNA synthesis was performed via the Promega reverse
transcription kit with both oligo(dT) and random primers.
qRT-PCR was carried out using SYBR Green Master Mix
on a StepOnePlus system. The primer sequences and PCR
settings are listed here (Supplementary Material 1, wjon.elm-
erpub.com) [15-18].

Statistical analysis

All statistical significance was determined via GraphPad
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Prism 8, version 8.2.1 (GraphPad Software, Inc., Bangalore,
India). The data are shown as the means =+ standard error of
the mean (SEM). A P value < 0.05 was considered signifi-
cant. A correlation study was carried out via the Spearman
coloration coefficient (r) via GraphPad Prism 8.

Results

ATRA treatment affected the cell population dynamics

Using forward and side scatter parameters in flow cytometry,
we analyzed dot plot data to assess the impact of 1 uM wild-
type ATRA on the HL60 cell population over time. Specifical-
ly, we compared untreated control HL60 cells to treated cells
on days 5, 6, and 7.

In this experimental setup, HL60 cells were cultured in
RPMI medium containing 1 uM ATRA, which was adminis-
tered on days 0, 3, and 5, ensuring continuous exposure to the
compound. The dot plot in Figure 1 illustrates two distinct cell
populations: 1) R1 (red population) represents undifferenti-
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ated HL60 cells characterized by higher forward scatter (FSC)
and lower side scatter (SSC), indicative of mononuclear cell
morphology; 2) R2 (gray population) represents differentiated
cells with lower FSC and higher SSC, indicative of increased
granularity and multinuclear morphology, suggestive of ma-
ture granulocytes or neutrophils.

Figure la shows the distribution of the R1 and R2 popu-
lations on days 5, 6, and 7 following ATRA treatment, where-
as Figure 1b shows these changes, highlighting statistically
significant differences at each time point. The data demon-
strated that ATRA treatment led to a significant reduction in
the R1 (immature) population and a corresponding increase
in the R2 (mature) population across all the examined time
points.

We next tested whether ATRA administration via a con-
tinuous feeding approach could affect the viability of HL60
cells, ensuring that repeated dosing remains safe, while also
examining whether 1 uM ATRA induces apoptosis. Previous
studies reported that early administration of ATRA at concen-
trations ranging from 10~ to 10"® M can induce apoptosis in
primary AML cells within 48 h [19]. Therefore, we aimed to
assess whether 1 uM ATRA impacts HL60 cell viability at later
time points, specifically from day 5 to day 7.

We used 7-AAD as a marker of nonviable cells and ana-
lyzed cell populations by plotting 7-AAD on the x-axis against
forward scatter on the y-axis. In untreated HL60 cells, 3.6%
were positive for 7-AAD, a percentage that remained rela-
tively constant up to day 7, representing the baseline level of
nonviable cells (Fig. 1¢). In response to the administration of 1
uM ATRA every 2 days, the percentage of the 7-AAD-positive
population increased slightly from about 3% to about 6%, in-
dicating that ATRA has minimal cytotoxicity and does not sig-
nificantly induce apoptosis (Fig. 1c).

This conclusion is supported by the literature, which con-
siders a 7-AAD-positive population less than 10% as indica-
tive of low cytotoxicity [19]. Our results confirm that repeated
dosing with 1 uM ATRA is safe for HL60 cell viability, caus-
ing only a minor (about 3%) increase in cell death compared
with that of the untreated control.

ATRA treatment increased the immunophenotype of ma-
ture granulocytes

The differentiation potential of ATRA is mostly based on the
expression of CD11b with or without CD14 expression in dif-
ferentiated cells [20, 21]. In our study, we examined the base-
line expression of cell surface markers in HL60 AML cells
prior to differentiation to compare the expression of these
markers with that of post differentiation markers. HL60 cells
were identified by a high level of CD15 and positive but low
expression of the CD45, CD38, and CD11b markers (Fig. 2a,
b, yellow histogram and bar).

In response to 1 uM wild-type ATRA, flow analyses were
carried out on days 5, 6, and 7 after differentiation. Figure 2a
shows the shift in the histogram comparing undifferentiated
HL60, a yellow histogram, to differentiated HL60, a gray his-
togram. Figure 2b shows the statistical analysis of the mean

fluorescence intensity (MFI) for each marker, comparing un-
differentiated HL60 cells (yellow bars) to differentiated HL60
cells (gray bars). The CD15 histogram shifted to the right, and
the MFI was significantly increased at days 5, 6, and 7 in a
time-dependent manner (P < 0.05, P < 0.005, and P < 0.0005,
respectively). CD11b expression also gradually and signifi-
cantly increased in response to 1 uM ATRA, with P < 0.005
at all time points (Fig. 2b). The same was applied to CD45,
with the histogram and MFI showing a slight but significant
shift (P < 0.005), corresponding to an increase in the marker.
CD38 represents a marker for the success of ATRA, which sig-
nificantly shifted to the right compared with that of the con-
trol (Fig. 2a) and was stably and significantly increased, with
P < 0.005 at all time points. The above data confirmed that
from day 5, changes in granulocytic markers were apparent
and increased gradually in a time-dependent manner for CD15,
CD45 and CD11b, while the CD38 marker was stably upregu-
lated in response to 1 uM ATRA.

The data above confirmed a maturation-towered granulo-
cytic pathway with upregulation of CD15, CD45, CD11b and
CD38 on day 5, which continued until day 7 in response to 1
uM ATRA that was fed into the HL60 cells.

To better understand the effect of ATRA treatment on
surface marker expression in HL60 cells, we analyzed both
monocytic and early myeloid markers. Specifically, we as-
sessed CD14, CD64, and HLA-DR to evaluate the potential
for monocytic differentiation and functional activation, as well
as CD33, CD13, and CD34 as markers of immaturity and the
blast phenotype.

As shown in Supplementary Material 2 (wjon.elmer-
pub.com), CD14, CD64, and CD34 were not expressed in
untreated HL60 cells and remained undetectable following
ATRA-induced differentiation. In contrast, CD13 and CD33,
which are constitutively expressed, were significantly down-
regulated at all the examined time points (P <0.05, P <0.005,
P <0.0005) (Fig. 3a, b), indicating a shift away from the im-
mature myeloid phenotype. Notably, although the pan-mono-
cytic markers CD14 and CD64 were unaffected, HLA-DR
- a marker associated with both phagocytic activity and early
myeloid/blast cells - was modestly but significantly upregu-
lated (P < 0.05).

Together, these findings suggest that ATRA promotes a
more mature phenotype in HL60 cells, as evidenced by the
downregulation of immature markers (CD13 and CD33) and
the slight induction of HLA-DR, potentially reflecting minor
monocytic activation alongside granulocytic differentiation.

ATRA treatment changed the morphology of HL60 cells
from homogenous promyelocytes to heterogeneous mature
cells

By examining Giemsa-stained slides from ATRA-treated HL60
cells and control cells, we observed six different morphological
changes in ATRA-treated cells. All appeared at days 5, 6, and 7
post differentiation. Figure 4 shows the morphology of each cell
type, as well as the percentage of cells present each day, com-
paring ATRA-treated to untreated HL60 controls. HL60 mostly
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rescence intensity.

contains promyelocytes, as shown in Figure 4a. The percentage
of promyelocytes remained between 95% and 100% in untreat-
ed HL60 cells and was reduced significantly to 33% on day 5,
reaching no more than 1% on day 7 post-ATRA differentiation
(P <0.0005) compared with that in untreated controls. The fol-
lowing maturation stage of granulocytes, metamyelocytes, was
significantly upregulated from 1-2% in the control group to 23%
on day 5 and 29% on day 7 (P < 0.0005) (Fig. 4b). As granulo-
cytes mature into polymorphonuclear (PMN) granulocytes, the
metamyelocytes give rise to bands, whereas the nucleus forms a
U-shaped structure that has not yet been segmented or separated
by a thin filament. The band cells did not appear in untreated

HL60 cells but were apparent on day 5 in 15% of the population.
This percentage gradually decreased as the cells further matured
on days 6 and 7, reaching 4% on day 6 and 2.6% on day 7,
which resembled the normal count of band cells in peripheral
blood (Fig. 4c). These findings confirmed that ATRA differenti-
ates HL60 cells as normal primary cells throughout all stages of
maturation in cell culture. Finally, Figure 4d shows the impact of
the 7-day differentiation protocol on fully matured neutrophils
that were absent from HL60 and appeared in 22% of the cells
on day 5, which further increased to 36% on day 6 and finally to
63% of the PMNSs on day 7 post-differentiation. Thus, we con-
firmed that ATRA-dependent maturation is a gradual process
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mean fluorescence intensity.

that slowly replaces HL60 from 100% promyelocytes to almost
1% promyelocytes, 29% metamyelocytes, 2.6% bands, and 63%
PMN cells. The remaining monocytes accounted for no more
than 2% of the total monocytes (Fig. 4¢), which also increased
gradually from 1.6% on day 5 to 2.3% on day 7. In addition, a
small population of mitotic cells, indicative of active prolifera-
tion, was consistently observed in approximately 1-2% of the to-
tal cell population. This proportion remained largely unaffected
by ATRA treatment, with only minimal changes detected. A full-
field view of the cell populations at each time point, comparing
untreated HL60 cells to those treated with ATRA, is provided
here (Supplementary Material 3, wjon.elmerpub.com).
Collectively, our data demonstrate that treatment with 1
uM ATRA for 7 days induces time-dependent differentiation
of HL60 promyelocytes into more mature granulocytic forms,
including metamyelocytes, band cells, and segmented neu-
trophils, with a minor emergence of monocytic features. No

morphological evidence of eosinophilic or basophilic differen-
tiation -lineages that also originate from promyelocytes - was
observed following ATRA exposure.

ATRA treatment positively correlated with granulocytes
maturation markers and negatively correlated with pro-
myelocytes immature markers

While many studies assessed cellular differentiation on the ba-
sis of either morphology or surface marker expression, our aim
was to bridge phenotype and function by analyzing the correla-
tion between ATRA-responsive surface markers and the mor-
phological maturation stages of HL60 cells. Specifically, we
performed Pearson correlation analyses between each surface
marker and the proportion of morphologically defined cell
subtypes. For promyelocytes (immature cells), we observed
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strong negative correlations with all five markers that were
significantly upregulated in response to ATRA: CD15, CD45,
CD38, CD11b, and HLA-DR (R = -0.8 to -0.9, P < 0.0001)
(Fig. 5a). Conversely, CD13 and CD33, which were down-
regulated following ATRA treatment, were strongly positively
correlated with the percentage of promyelocytes (R = 0.89 and
0.90, respectively; P<0.0001) (Fig. 5a). At the metamyelocyte
stage, CD15, CD45, CD38, CD11b, and HLA-DR continued to
exhibit strong positive correlations (R of about 0.9, P <0.0001)
(Fig. 5b), whereas CD13 and CD33 demonstrated strong nega-
tive correlations (R =-0.86, P < 0.0001) (Fig. 5b). For mature
segmented neutrophils (PMNs), CD15, CD45, CD38, CD11b,
and HLA-DR again showed strong positive correlations with
increasing PMN percentages (R = 0.8 to 0.9, P < 0.0001) (Fig.
5c), whereas CD13 and CD33 remained negatively correlat-

ed (R =-0.84 and -0.86, respectively; P < 0.0001) (Fig. 5¢c).
Collectively, these findings highlight a consistent pattern: the
expression of CD15, CD45, CD38, CD11b, and HLA-DR in-
creases in parallel with the morphological maturation of HL60
cells from promyelocytes to metamyelocytes and ultimately to
mature neutrophils. In contrast, CD13 and CD33 are closely
associated with the immature promyelocytic phenotype and
decrease with ATRA-induced differentiation.

ATRA induced the mRNA expression of myeloid-specific
transcription factors

Previous studies have shown that ATRA influences several
myeloid-specific transcription factors at early time points. In
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particular, CEBPa has been described as a key target in ATRA-
induced differentiation [22]. RUNXI plays a key role in mono-
cyte maturation by working in synergy with SPII to activate
the M-CSFR promoter [23]. PU.1, a master transcription fac-
tor, was also shown to be upregulated in response to 1 pM
ATRA in the APL cell line NB4 [24]. Therefore, we examined
the mRNA levels of CEBPa, SPII proto-oncogene (SPII), and
runt-related transcription factor 1 (RUNX1), along with one of
their downstream targets, macrophage colony-stimulating fac-
tor receptor (M-CSFR), in an attempt to explain the upregula-
tion of HLA-DR observed via flow cytometry as a marker of
monocyte activation. Continuous ATRA feeding was expected
to affect the expression of these transcription factors at later
time points, which is consistent with findings in the literature.

To evaluate this, RNA was extracted at days 5, 6, and 7
to assess the impact of repeated ATRA-containing media on
gene expression during late differentiation. Using the delta-
delta threshold cycle (AACt) method and f-actin as a house-
keeping gene, we found that CEBPa, RUNXI, and SPI] were
upregulated on day 6 by approximately 3-fold, 5.6-fold, and
1-fold, respectively (Fig. 6). Notably, only RUNX! remained
upregulated on day 7, whereas M-CSFR was not significantly
changed at any of the time points. These findings suggest that
the observed HLA-DR upregulation and subtle morphological
changes toward monocytic features may occur through mecha-
nisms independent of M-CSFR signaling.

These findings support our hypothesis that continuous
ATRA exposure enhances the expression of key differentiation

transcription factors -CEBPa, RUNXI, and SPI] - particularly
by day 6, which aligns with the phenotypic transition marked
by CD11b and CD15 expression. These data confirm that re-
peated ATRA dosing is both biologically and molecularly ef-
fective in driving the differentiation of HL60 cells toward ma-
ture granulocytes.

Discussion

Differentiation therapy represents a pivotal strategy in the
treatment of AML, targeting the impaired maturation of leu-
kemic cells while potentially reducing the toxicity associated
with conventional chemotherapy. In this study, we examined
the effects of ATRA on HL-60 cells using a repeated dosing
regimen, in which fresh ATRA-containing RPMI medium was
administered every 2 days. This continuous exposure model
ensured sustained intracellular drug availability, enabling the
temporal assessment of differentiation. Notably, this approach
resulted in a progressive and significant upregulation of mye-
loid-granulocytic markers: CD15, CD45, CD11b, and CD38,
beginning on day 5 and persisting through day 7. Conversely,
the immaturity-associated markers CD13 and CD33 were sig-
nificantly downregulated at all time points. No changes were
observed in the monocytic markers CD14 and CD64, whereas
HLA-DR showed a modest but consistent increase following
differentiation. We also observed a shift in morphology from
a homogeneous population resembling promyelocytes to a
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heterogeneous population resembling the physiological dif-
ferential count. These changes correlated with the flow cyto-
metric expression of myeloid markers. In addition, the mRNA
expression of key transcription factors involved in myeloid
differentiation, SP//, RUNXI, and CEPBa, was notably up-
regulated, particularly on day 6 post-induction, correspond-
ing to 24 h after the final administration of 1 uM ATRA. The
increase in the expression of the CD15, CD45, CD11b, and
CD38 markers on days 5, 6, and 7 in response to 1 uM ATRA
is consistent with the findings of previous studies and indi-
cates a transition toward myeloid maturation. The upregula-
tion of CD11b and CDI15 also implies that HL-60 cells adapt
to the normal hematopoiesis process of myeloid cells [25],
whereas promyelocytes exhibit low levels of CDI11b and
CD15. CDl11b is commonly used as a myeloid marker for
granulocyte differentiation [26]. The granulocytic differen-
tiation markers CD11b and CD15 were significantly upregu-
lated at all time points following ATRA treatment. CD15, in
particular, is widely used to identify maturing myeloid cells,
and its consistent increase confirms the successful induction
of granulocytic differentiation [27, 28]. CD38, although not
lineage specific, is a recognized marker of ATRA-induced
maturation in HL60 cells [21, 29]. Its robust upregulation
across all time points supports the initiation of differentiation
pathways. Forward and side scatter analyses further supported
these findings, revealing an apparent decrease in the R1 popu-
lation, undifferentiated mononuclear cells, and an increase in
the R2 population, granular multilobed cells. These morpho-
logical changes that were aligned with the immunophenotypic
shifts, confirming that the HL60 promyelocyte population un-
derwent ATRA-induced differentiation primarily into granu-
locytes, with minimal evidence of monocytic or intermediate-
stage features.

The immunophenotype of untreated HL60 cells in our
study closely resembled that of APL (AML-M3), character-
ized by the expression of CD13, CD15, and CD33 and the
absence of HLA-DR, a marker typically expressed in AML-
M2 [30]. Baseline levels of CD13M and CD33" in HL60 cells
reflected their promyelocytic origin. However, treatment with
1 uM ATRA led to a progressive reduction in both CD13 and
CD33 expression, demonstrating a strong positive correlation
with promyelocytes (R =0.89 - 0.9, P<0.0001) and a negative
correlation with more mature stages, such as metamyelocytes
and neutrophils (R =-0.86, P < 0.0001). This pattern deviates
from normal myelopoiesis, in which CD13 typically increases
in cells undergoing maturation, whereas CD33 decreases [25].
This discrepancy likely reflects intrinsic differences between
primary myeloid cells and HL60 cells, an APL-derived cell
line that lacks PML-RARa translocation.

In contrast, the monocytic markers CD14 and CD64 were
neither expressed at baseline nor induced by ATRA, suggest-
ing a lack of monocytic differentiation. This finding is con-
sistent with previous reports showing minimal expression of
CD14 in HL60 cells after ATRA treatment, whereas NB4 cells
presented greater monocytic marker induction under similar
conditions [32, 33]. Despite the absence of CD14 and CD64,
we observed a 2.3% increase in morphologically defined
monocytes by day 7, which may be linked to the modest up-
regulation of HLA-DR, a marker found on both granulocytes

and monocytes [33, 34]. Interestingly, HLA-DR expression,
although low at baseline, increased slightly but significantly
with ATRA treatment. While HLA-DR is not typically as-
sociated with granulocytic lineages, its expression has been
reported to increase following stimulation with cytokines
such as granulocyte-macrophage colony-stimulating factor
(GM-CSF) [35]. CD34, a marker of hematopoietic progeni-
tors, remained undetectable at baseline and was unaffected
by ATRA treatment. These findings confirm the lack of stem-
like features in HL60 cells and support the idea that HL-60
cells undergo differentiation following ATRA treatment. The
homogenous population of HL60 cells transitioned into a het-
erogeneous population comprising mature cell stages, includ-
ing neutrophils, metamyelocytes, and monocytes. This shift
mimics the distribution observed in normal myelopoiesis.
Notably, treatment of HL-60 cells with ATRA had no clear
effect on the number of mitotic figures, suggesting that cel-
lular proliferation remained active despite differentiation.
These findings are consistent with previous studies demon-
strating that HL60 cells, when treated with 1 pM ATRA for
96 h, undergo morphological changes indicating maturation
[36]. To guide drug assessment, we analyzed which immu-
nophenotypic markers of differentiation correlated with spe-
cific morphological changes. Morphological evaluation of
Giemsa-stained HL60 cells revealed a pattern of granulocyt-
ic maturation that closely mirrored the immunophenotypic
profile detected by flow cytometry, as confirmed through
correlation analysis. A marked decrease in the percentage of
promyelocytes from > 95% to < 1% over 7 days significantly
correlated with the downregulation of the immaturity-associ-
ated markers CD13 and CD33. Simultaneously, the increase
in metamyelocytes, band cells, and segmented neutrophils
corresponded with the progressive increase in the expression
of differentiation markers, including CD15, CD11b, CD45,
and CD38. Notably, a transient increase in band cells was
observed on day 5, followed by a shift toward PMNs by day
7. This stagewise transition - from promyelocytes to meta-
myelocytes, then bands, and finally segmented neutrophils -
recapitulates physiological granulopoiesis and demonstrates
that HL60 cells can mimic normal myeloid maturation under
ATRA stimulation. This progression was further supported
by the temporal upregulation of CD11b and CD15, markers
indicative of terminal granulocytic differentiation. As previ-
ously reported, tracking antigen expression over time, par-
ticularly that of markers such as CD11b, CD14, and CD15,
provides a robust method to monitor whether leukemic blasts
are maturing in response to therapy [37].

The limited emergence of monocytes (about 2%) and the
absence of CD14/CD64 expression suggest that the impact of
ATRA on HL60 cells is largely restricted to the granulocytic
lineage, with minimal monocytic differentiation. Similarly, the
presence of a small, stable population of mitotic cells through-
out treatment indicates that proliferation is not fully arrested
during differentiation, which is consistent with the known abil-
ity of ATRA to induce maturation without necessarily inducing
cell cycle exit at the early stage.

Understanding the relationship between surface marker
expression and morphological changes during ATRA-induced
differentiation offers valuable insight for optimizing treat-
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ment strategies, particularly in cases of APL lacking the PML-
RARa translocation, such as HL-60 cells, and for guiding the
development of future combination therapies. Moreover, the
observed correlation between immunophenotypic shifts and
morphological progression supports the conclusion that the
changes were attributable to differentiation rather than to the
cytotoxic effects of the drug. The above hypothesis was sup-
ported by very subtle changes in 7ADDs observed in ATRA-
treated HL60 cells.

Our data provide mechanistic insights into the effect of
ATRA on HL-60 cells, confirming that the myeloid-specific
transcription factors CEBPa, SPI1, and RUNXI, which act
cooperatively to promote granulocytic and monocytic differ-
entiation [38, 39], were all upregulated in response to 1 uM
ATRA. CEBPa was significantly upregulated on day 6 post-
treatment. This delayed response is consistent with previous
reports in primary APL samples and may be attributed to the
relatively low RARa expression in HL-60 cells. In contrast,
earlier CEBPo induction is observed in other cell lines, such
as KG-1, which have higher RARa levels [40]. Mueller et
al (2006) demonstrated that ATRA restored differentiation
in t(15;17)-positive APLs through PU./ upregulation, where
CEBPo binds to the PU.I promoter region [41]. RUNXI,
also known as AMLI, has been shown to play a compensa-
tory role when PU./ is downregulated in AML. Under these
conditions, RUNXI may support leukemogenesis by trigger-
ing autophagy-based survival programs instead of relying on
growth factor-mediated signaling [42]. Taken together, the
observed upregulation of SP/I/, CEBPa, and RUNXI sup-
ports their role in mediating ATRA-induced differentiation,
particularly under repeated dosing in HL-60 cells lacking the
PML-RARa fusion.

While our study focused on ATRA-induced differentiation
in HL60 cells, there is increasing evidence that the therapeutic
potential of ATRA extends to other leukemia models, includ-
ing chronic myeloid leukemia (CML). Notably, ATRA has
shown efficacy in the CML cell line KCL-22 M, which harbors
a mutation in the BCR-ABL fusion gene following tyrosine ki-
nase inhibitor (TKI) resistance [24]. Wang et al demonstrated
that ATRA can inhibit the emergence of such mutations, partly
by upregulating CD38, a differentiation marker with NADase
enzymatic activity [43]. Reduced CD38 expression has been
implicated in disease progression from the chronic phase to
the accelerated phase of CML, highlighting its functional sig-
nificance.

In summary, the present study evaluated the impact of
ATRA on the HL60 leukemia cell line and demonstrated that
repeated and sequential ATRA dosing upregulated myeloid-
granulocytic differentiation markers (CD15, CD45, CDI11b,
and CD38) and downregulated immature markers (CD13 and
CD33), with minimal monocytic differentiation (CD14 and
CD64) observed. Morphological testing revealed a clear shift
from undifferentiated to granulocytic cells, indicating the my-
elopoiesis process. Immunophenotypic shifts are correlated
with morphological changes, inferring differentiation rather
than cytotoxicity. Here, we demonstrated that the expression
of surface markers in cells is correlated with morphological
changes during ATRA-induced differentiation in an APL cell
model at multiple time points. These findings suggest that

ATRA directs HL60 differentiation toward normal granu-
lopoiesis, highlighting its potential use as a therapeutic candi-
date in differentiation-based AML treatment strategies.
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