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Abstract

High-fructose corn syrup (HFCS), a widely used sweetener in pro-
cessed foods and beverages since the 1970s, has garnered significant
attention for its potential role in promoting metabolic disorders and
cancer. Unlike glucose, fructose is primarily metabolized in the gut,
where it stimulates de novo lipogenesis, promotes insulin resistance,
and contributes to hepatic steatosis. These metabolic disturbances
are strongly associated with chronic low-grade inflammation, a
well-established risk factor for tumor development and progression.
Emerging evidence suggests that HFCS contributes to a pro-inflam-
matory environment through upregulation of macrophage activation,
increased cytokine production, and disruption of gut microbiota ho-
meostasis, thereby impairing intestinal barrier integrity and promot-
ing systemic inflammation. Animal studies have shown that HFCS
consumption induces greater insulin resistance and adipose tissue
inflammation compared to high-fat diets. Recent research highlights
the direct influence of HFCS on cancer biology, beyond its indirect
effects through obesity and metabolic disorders. Preclinical models
demonstrate that HFCS intake accelerates tumor growth in colorectal,
breast, and melanoma tumor models, independent of obesity. Mecha-
nistically, fructose metabolism supports cancer cell proliferation via
enhanced glycolysis, lipogenesis, and nucleotide synthesis through
the pentose phosphate pathway. Fructose also suppresses necroptosis
in hypoxic conditions and may promote metastasis via the genera-
tion of lipid mediators like lysophosphatidylcholine (LPC) and the
upregulation of fructose transporters such as glucose transporter 5
(GLUTS). Diets rich in HFCS have been shown to activate the insu-
lin/insulin-like growth factor 1 (IGF-1) signaling pathway, leading to
enhanced tumor growth and reduced apoptosis. Epidemiological data
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link high fructose consumption with increased risk for in colorectal,
pancreatic, and breast cancers in addition to poorer prognosis in these
patients. However, findings remain heterogeneous, likely due to vari-
ability in fructose sources, dietary patterns, and host factors. Given
the widespread dietary exposure to HFCS, understanding its metabol-
ic, inflammatory, and oncogenic effects is critical. This review syn-
thesizes current evidence linking HFCS to cancer pathogenesis and
underscores the urgent need for further research into fructose-specific
mechanisms and their relevance to cancer prevention and therapeutic
strategies.
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Introduction

High-fructose corn syrup (HFCS) has been extensively uti-
lized as a sweetener in processed foods and beverages since
the 1970s, primarily due to its cost-effectiveness and sweet-
ness comparable to sucrose [1]. Its widespread adoption co-
incided with a notable increase in obesity rates in the United
States, suggesting a potential link between HFCS consumption
and the obesity epidemic.

HFCS is composed of varying ratios of fructose and glu-
cose, with common formulations including HFCS-42 and
HFCS-55, containing approximately 42% and 55% fructose,
respectively [2]. Although HFCS is generally described as con-
taining 42% or 55% fructose, independent laboratory analyses
have demonstrated that some commercially available sweet-
ened beverages actually contain higher fructose-to-glucose ra-
tios, ranging from 60% to 65%. Importantly, food labels do not
disclose the exact fructose content, and the actual composition
may differ from what is generally recognized as safe [3, 4]. Un-
like glucose, fructose is predominantly metabolized in the gut,
where it can promote de novo lipogenesis (DNL), leading to
increased triglyceride synthesis, insulin resistance, and hepatic
steatosis. Recent evidence indicates that the small intestine,
rather than the liver, is the primary site of initial fructose me-
tabolism. Most absorbed fructose is converted to glucose and
organic acids by enterocytes before reaching the portal circula-
tion. Fructose that exceeds an individual’s intestinal absorptive
and metabolic capacity “spills over” first into the gut lumen,
altering the intestinal environment and microbiota, and, when
further exceeded, into the liver where it is metabolized [4-9].
These metabolic disturbances are associated with chronic low-
grade inflammation, a recognized contributor to the develop-
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ment and progression of various type of cancers [5].

Recent studies have elucidated mechanisms by which
excessive fructose intake may facilitate tumorigenesis. For
instance, fructose has been shown to induce inflammatory
activation in macrophages, enhancing the pro-inflammatory
state of the tumor microenvironment. In addition to its meta-
bolic effects, unabsorbed fructose in the gut has been shown to
undergo non-enzymatic fructosylation of peptides, including
incretins, leading to the in sifu formation of fructose-derived
advanced glycation end-products (FruAGEs). These FruAGEs
exhibit high affinity for receptors of advanced glycation end-
products (RAGESs), thereby promoting pro-inflammatory sign-
aling. This mechanism, known as the “Fructositis hypothesis,”
has been supported by a series of studies, with Yuan et al pro-
viding the most recent evidence that FruAGEs are generated
during simulated gastrointestinal digestion [10]. Furthermore,
epidemiologic evidence links HFCS intake with dispropor-
tionately higher asthma risk among young Black adults, fur-
ther supporting a role of FruAGEs in immune and inflamma-
tory responses [11]. Additionally, fructose can contribute to
the metabolic reprogramming of cancer cells, supporting their
proliferation and survival. Animal models have demonstrated
that high-fructose diets can exacerbate tumor growth in colo-
rectal cancer, independent of obesity [5, 12, 13].

Furthermore, epidemiological data suggest a correlation
between high intake of sugar-sweetened beverages, often con-
taining HFCS, and increased cancer risk [14, 15]. These find-
ings underscore the importance of understanding the role of
dietary sugars in cancer development.

Given the pervasive presence of HFCS in the modern diet
and its potential implications in cancer biology, this article
aims to comprehensively review the current evidence linking
HFCS consumption to inflammation and cancer. We will ex-
plore the metabolic pathways influenced by fructose, its im-
pact on inflammatory processes, and the resultant effects on
carcinogenesis.

Metabolism and Absorption of HFCS

HFCS, a mixture of free fructose and glucose, exhibits unique
metabolic characteristics distinct from those of glucose.
Fructose is primarily absorbed via the GLUTS transporter in
the small intestine, where it is largely converted to glucose
and organic acids by enterocytes. When the absorptive and
metabolic capacity of the intestine is exceeded, the remain-
ing fructose “spills over” into the liver for further metabolism
[6]. Unlike glucose, fructose does not directly stimulate in-
sulin secretion and bypasses the rate-limiting steps of gly-
colysis, thereby entering metabolic pathways that promote
DNL. In addition, unabsorbed fructose in the gut can inter-
fere with incretin signaling by fructosylating and deactivat-
ing glucagon-like peptide-1 (GLP-1) and gastric inhibitory
polypeptide (GIP), which may further contribute to insulin
insufficiency [16, 17].

Recent studies have highlighted that excessive intake of
HFCS is associated with hepatic fat accumulation, insulin
resistance, dyslipidemia, and elevated serum uric acid levels

[17]. Recent studies have also provided new insights into the
hepatic effects of excessive fructose consumption. Unlike su-
crose, HFCS represents a relatively recent introduction into
the food supply, with widespread adoption occurring in the
United States during the early 1980s. Moreover, independent
laboratory analyses indicate that some commercially avail-
able sweetened beverages may contain fructose-to-glucose
ratios exceeding the commonly cited 55%, thereby increasing
excess-free-fructose exposure beyond levels generally recog-
nized as safe. Such formulations can promote fructose mal-
absorption and altered gut health, mechanisms increasingly
implicated across chronic diseases [18]. Ecologically, HFCS
production and use rose steeply from 1980 through the late
1990s in the USA, overlapping with rising incidence patterns
observed for several cancers, including liver and pancreatic
cancer, and with increasing colorectal cancer incidence among
younger adults; these site-specific trends warrant further in-
vestigation into potential links with excess-free-fructose ex-
posure [19, 20]. One such study made healthy male partici-
pants consume beverages sweetened with either fructose or
sucrose for 8 weeks and demonstrated a significant increase in
hepatic DNL [21]. Moreover, multiple 'H-magnetic resonance
spectroscopy (MRS)-based studies have shown that fructose-
containing beverages contribute to an increased risk of nonal-
coholic fatty liver disease (NAFLD), even over short durations
of intake [22-24].

Fructose metabolism rapidly depletes intracellular ATP,
leading to increased uric acid production, which has been im-
plicated in hypertension and renal dysfunction. Adolescents
with high consumption of HFCS-sweetened beverages were
found to have significantly elevated serum uric acid and tri-
glyceride concentrations [25]. However, meta-analyses of
isocaloric substitution trials have suggested that fructose may
not exert adverse effects on low-density lipoprotein (LDL)
cholesterol or glycemic indices under conditions of energy
balance [26]. It is important to note, however, that many of
these studies were conducted by industry-sponsored groups
with potential conflicts of interest. A more recent systematic
review and meta-analysis from the same research group, fo-
cusing on fructose-containing foods and inflammatory bio-
markers, found that eight out of 10 trials including fructose
or HFCS showed significant adverse effects, whereas the two
that did not excluded individuals with fructose malabsorption
either directly or indirectly [27]. No significant effects were
observed in studies of fruit or most fruit juices, except apple
juice, which is particularly high in unpaired fructose. Col-
lectively, these findings suggest that the distinguishing factor
may be excess unpaired fructose rather than energy balance
per se.

Recent research also suggested that variability in intestinal
fructose absorption, potentially influenced by GLUTS expres-
sion, can result in malabsorption and subsequent delivery of
fructose to the colon in vitro [28]. This can lead to gut microbi-
ota dysbiosis, contributing to impaired intestinal barrier func-
tion and systemic low-grade inflammation - factors increas-
ingly recognized in the pathogenesis of metabolic disorders
and potentially cancer. In addition, gut-resident advanced gly-
cation end-products (AGEs) themselves have been associated
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with gut dysbiosis, further supporting a link between dietary
fructose, FruAGE formation, and altered intestinal microbial
ecology [29-32].

In animal models, HFCS consumption has been shown to
induce greater insulin resistance and adipose tissue inflamma-
tion than high-fat diets [33]. Short-term consumption of HFCS-
sweetened beverages has been shown to increase hepatic fat ac-
cumulation and reduce insulin sensitivity, indicating a potential
risk for the development of metabolic disorders [34]. Moreo-
ver, fructose intake has been associated with increased visceral
adiposity, adverse alterations in circulating lipid profiles, and
further reductions in insulin sensitivity, all of which may con-
tribute to the pathogenesis of metabolic syndrome [35]. Fur-
thermore, the lack of stimulation of satiety hormones such as
insulin and leptin by fructose may facilitate excess caloric intake
and weight gain, reinforcing its obesogenic potential. Beyond
overconsumption, however, recent evidence emphasizes that
the unique presence of unpaired fructose in HFCS can exceed
intestinal absorptive capacity, leading to malabsorption, altered
gut microbial composition, and inflammatory responses. In ani-
mal models, dietary fructose has been shown to worsen colitis
through gut microbiota-dependent mechanisms [36]. Clinically,
fructose malabsorption is prevalent among patients with irrita-
ble bowel syndrome even after excluding small intestinal bacte-
rial overgrowth, supporting the pathophysiological relevance of
excess unabsorbed fructose [37].

Despite its metabolic drawbacks, fructose possesses a low
glycemic index. In controlled settings, moderate fructose in-
take (< 60 g/day) has been shown to reduce HbAlc levels in
patients with type 2 diabetes without adversely affecting fast-
ing glucose or insulin [26]. However, it should be noted that
these trials did not systematically assess fructose malabsorp-
tion status among participants, which may represent an im-
portant limitation given that malabsorption can significantly
modify metabolic and inflammatory outcomes. Mechanisti-
cally, fructose may exert glucose-sparing effects by enhancing
glucokinase activity, promoting glycogen synthesis, and sup-
pressing hepatic glucose output.

HFCS and Inflammation

Emerging evidence highlights a mechanistic link between
HFCS consumption and chronic low-grade inflammation: a
key component of the pathophysiology of metabolic syndrome
and type 2 diabetes [1, 38, 39]. Several studies have reported
that excessive fructose intake elevates biomarkers of inflam-
mation and oxidative stress, including reactive oxygen spe-
cies and proinflammatory cytokines such as Toll-like recep-
tor 4 (TLR-4), C-reactive protein (CRP), interleukin (IL)-6,
E-selectin, and plasminogen activator inhibitor 1 (PAI-1) [39-
44]. In rodent models, HFCS has been shown to induce more
pronounced adipose tissue inflammation than high-fat diets,
in part by enhancing proinflammatory macrophage infiltration
and promoting insulin resistance via ghrelin receptor-mediated
pathways [33]. Furthermore, deficiency of the ghrelin receptor
(GHS-R) has been shown to attenuate HFCS-induced adipose
tissue inflammation and insulin resistance [33]. Activation of

peroxisome proliferator-activated receptor-delta (PPAR-9) has
also been shown to mitigate HFCS-induced renal and systemic
inflammation [45, 46].

Fructose also appears to modulate immune signaling
through the upregulation of multiple cytokines, including in-
terferon (IFN)-y, IL-1p, IL-6, tumor necrosis factor (TNF)-a,
and IL-2, in both adipose and skeletal muscle tissues [47, 48].

In addition to these systemic effects, chronic fructose ex-
posure has been implicated in gut microbiota dysbiosis. Stud-
ies have demonstrated that excessive intake of fructose and
artificial sweeteners reduces microbial diversity and shifts
microbial composition toward proinflammatory compositions,
potentially compromising intestinal barrier integrity and con-
tributing to systemic endotoxemia [49-51].

These microbiota-mediated changes may link HFCS in-
take to inflammation-associated carcinogenesis. Inflammatory
transcription factors such as signal transducer and activator of
transcription 3 (STAT3) and nuclear factor-xB (NF-kB), which
are activated downstream of microbial and metabolic signals,
play central roles in promoting tumorigenesis under chronic
inflammatory conditions [52-54]. Collectively, these findings
underscore the proinflammatory and immunomodulatory po-
tential of HFCS in the development of metabolic and neoplas-
tic diseases.

HFCS and Cancer

Recent research suggests that HFCS may directly contribute
to cancer development and progression beyond its indirect ef-
fects through obesity and metabolic disorders. Epidemiologi-
cally, conditions strongly linked to excessive fructose intake
- such as obesity and type 2 diabetes - are well-established risk
factors for multiple cancers, including colorectal, pancreatic,
breast, liver, and endometrial cancers [5, 55].

One of the key mechanisms by which HFCS promotes
cancer is the creation of a metabolic environment favorable
to tumorigenesis. HFCS-rich diets increase blood glucose and
insulin levels, activating the insulin/IGF-1 signaling pathway
that enhances tumor growth and inhibits apoptosis [56-59].
This pathway, through phosphatidylinositol-3-kinase-Akt-
mammalian target of rapamycin (PI3K-Akt-mTOR) activa-
tion, supports cancer cell proliferation and metabolic repro-
gramming.

Preclinical studies have demonstrated that HFCS can di-
rectly promote tumor growth. Oral administration of HFCS
(45% glucose, 55% fructose) in adenomatous polyposis coli
(APC) mutant mice has been shown to significantly increase
tumor size and grade, independent of obesity or presence of
metabolic syndrome. Within cancer cells, rapid fructose me-
tabolism enhances glycolysis and fatty acid synthesis, thereby
fueling cell proliferation [55].

Furthermore, a study found that HFCS consumption pro-
moted tumor growth in animal models of melanoma, breast,
and cervical cancer [13]. Interestingly, this effect did not stem
from fructose utilization by the tumor cells themselves, but
rather from liver metabolism of fructose into lipid mediators
such as LPC, which supported tumor cell growth.
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Additionally, in human colorectal cancer cell lines (Caco-
2 and HT29), fructose was shown to inhibit receptor-interact-
ing protein (RIP)-dependent necroptosis under hypoxic condi-
tions, thereby promoting tumor cell survival [60]. This effect
was linked to enhanced glycolytic activity, suggesting that
fructose may aid metabolic adaptation in the tumor microen-
vironment.

Enzymes involved in fructose metabolism, such as ke-
tohexokinase (KHK), and the fructose transporter GLUTS,
have been implicated in cancer cell growth and chemoresist-
ance [61, 62]. Inhibiting their expression has been proposed as
a strategy to suppress tumor progression.

In pancreatic cancer cells, fructose has been shown to
promote nucleotide synthesis via the non-oxidative branch of
the pentose phosphate pathway (PPP), particularly through up-
regulation of transketolase (TKT) [63]. This enables tumor cell
proliferation even under glucose-limited conditions. Targeting
fructolytic enzymes such as KHK-C has been proposed as a
therapeutic target to suppress tumor growth in colorectal and
liver cancers [57].

Overexpression of fructose transporters such as GLUTS
(SLC2AS5) has been observed in breast, colorectal, lung, and
pancreatic cancers [64, 65], suggesting a role for fructose me-
tabolism in enhancing tumor invasion and metastatic potential.

Additionally, an autopsy study of lung cancers revealed
that expression of GLUT3 and GLUTS was elevated in liver
metastases compared to primary tumors, suggesting that fruc-
tose metabolism may support survival and proliferation in
metastatic sites [66].

Epidemiological studies have yielded mixed findings on
the association between fructose intake and cancer risk. Posi-
tive associations have been reported for colorectal [67, 68],
pancreatic [69], and breast cancers [70], while studies on
prostate and lung cancer have shown negative or null asso-
ciations [59, 71]. These discrepancies may stem from differ-
ences in fructose sources (e.g., natural vs. synthetic), dietary
backgrounds, and individual microbiome profiles. Another
potential limitation of epidemiological studies is time-varying
confounding, as older participants typically consume fewer
HFCS-sweetened beverages than younger individuals. Conse-
quently, studies restricted to older cohorts may underestimate
the true long-term cancer risk associated with HFCS intake.
Longitudinal studies that begin in younger populations and
follow participants over time are therefore likely to provide
more accurate assessments. Consistent with this, US CDC data
demonstrate that sugar-sweetened beverage intake decreases
with age.

Interestingly, patients with pancreatic cancer have been
found to have fasting serum fructose levels three times higher
than healthy individuals [72]. Furthermore, in stage III colo-
rectal cancer patients, higher total fructose intake has been as-
sociated with worse recurrence-free survival [73].

Taken together, these findings support that HFCS and
fructose may influence multiple aspects of cancer biology -
including tumor metabolism, proliferation signaling, invasion,
and metastasis. Future research should aim to distinguish the
effects of fructose metabolism itself from those of excess ca-
loric intake and identify subgroups of patients who may be
particularly sensitive to fructose-driven tumor progression.

Conclusion

HFCS is a widely used sweetener in modern diets, and ex-
erts profound effects on metabolic health and carcinogenesis
through a complex network of pathways. Beyond its well-
established association with obesity and insulin resistance,
emerging evidence highlights a direct role for HFCS and fruc-
tose in promoting chronic inflammation, modulating immune
responses, and facilitating cancer cell proliferation, survival,
and metastasis.

Fructose metabolism supports tumor growth through
enhanced glycolysis, lipogenesis, and nucleotide synthesis,
particularly under nutrient-deprived or hypoxic conditions.
Inflammatory and microbiota-mediated pathways further ex-
acerbate the tumor-promoting environment, linking dietary
sugar intake to oncogenic signaling cascades. Although epi-
demiological findings remain mixed, studies have consistently
implicated high fructose intake in the increased risk and poor
prognosis of several cancer types, including colorectal and
pancreatic cancer.

Given the pervasive consumption of HFCS in processed
foods and beverages, these findings underscore the urgent
need for public health interventions, nutritional education, and
further mechanistic studies. Future research should focus on
identifying vulnerable populations, characterizing fructose-
specific metabolic reprogramming in tumors, and exploring
dietary modification as an adjunct to cancer prevention and
therapy.
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