

High-Fructose Corn Syrup on Inflammation and Cancer

Tomoyoshi Aoyagi^{a, f}, Gaku Ohira^b, Koichi Hayano^b, Olivia Martin^c, Kazuaki Takabe^{c, d, e}

Abstract

High-fructose corn syrup (HFCS), a widely used sweetener in processed foods and beverages since the 1970s, has garnered significant attention for its potential role in promoting metabolic disorders and cancer. Unlike glucose, fructose is primarily metabolized in the gut, where it stimulates de novo lipogenesis, promotes insulin resistance, and contributes to hepatic steatosis. These metabolic disturbances are strongly associated with chronic low-grade inflammation, a well-established risk factor for tumor development and progression. Emerging evidence suggests that HFCS contributes to a pro-inflammatory environment through upregulation of macrophage activation, increased cytokine production, and disruption of gut microbiota homeostasis, thereby impairing intestinal barrier integrity and promoting systemic inflammation. Animal studies have shown that HFCS consumption induces greater insulin resistance and adipose tissue inflammation compared to high-fat diets. Recent research highlights the direct influence of HFCS on cancer biology, beyond its indirect effects through obesity and metabolic disorders. Preclinical models demonstrate that HFCS intake accelerates tumor growth in colorectal, breast, and melanoma tumor models, independent of obesity. Mechanistically, fructose metabolism supports cancer cell proliferation via enhanced glycolysis, lipogenesis, and nucleotide synthesis through the pentose phosphate pathway. Fructose also suppresses necroptosis in hypoxic conditions and may promote metastasis via the generation of lipid mediators like lysophosphatidylcholine (LPC) and the upregulation of fructose transporters such as glucose transporter 5 (GLUT5). Diets rich in HFCS have been shown to activate the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, leading to enhanced tumor growth and reduced apoptosis. Epidemiological data

Manuscript submitted August 18, 2025, accepted September 27, 2025 Published online October 10, 2025

^eDepartment of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences the State University of New York, Buffalo NY 14203, USA ^fCorresponding Author: Tomoyoshi Aoyagi, Department of Breast Surgical Oncology, Funabashi Municipal Medical Center, 1-21-1 Kanasugi, Funabashi, Chiba 273-8588, Japan. Email: taoyagi0815@mmc.funabashi.chiba.jp

doi: https://doi.org/10.14740/wjon2652

link high fructose consumption with increased risk for in colorectal, pancreatic, and breast cancers in addition to poorer prognosis in these patients. However, findings remain heterogeneous, likely due to variability in fructose sources, dietary patterns, and host factors. Given the widespread dietary exposure to HFCS, understanding its metabolic, inflammatory, and oncogenic effects is critical. This review synthesizes current evidence linking HFCS to cancer pathogenesis and underscores the urgent need for further research into fructose-specific mechanisms and their relevance to cancer prevention and therapeutic strategies.

Keywords: High-Fructose Corn Syrup; HFCS; Inflammation; Cancer

Introduction

High-fructose corn syrup (HFCS) has been extensively utilized as a sweetener in processed foods and beverages since the 1970s, primarily due to its cost-effectiveness and sweetness comparable to sucrose [1]. Its widespread adoption coincided with a notable increase in obesity rates in the United States, suggesting a potential link between HFCS consumption and the obesity epidemic.

HFCS is composed of varying ratios of fructose and glucose, with common formulations including HFCS-42 and HFCS-55, containing approximately 42% and 55% fructose, respectively [2]. Although HFCS is generally described as containing 42% or 55% fructose, independent laboratory analyses have demonstrated that some commercially available sweetened beverages actually contain higher fructose-to-glucose ratios, ranging from 60% to 65%. Importantly, food labels do not disclose the exact fructose content, and the actual composition may differ from what is generally recognized as safe [3, 4]. Unlike glucose, fructose is predominantly metabolized in the gut, where it can promote de novo lipogenesis (DNL), leading to increased triglyceride synthesis, insulin resistance, and hepatic steatosis. Recent evidence indicates that the small intestine, rather than the liver, is the primary site of initial fructose metabolism. Most absorbed fructose is converted to glucose and organic acids by enterocytes before reaching the portal circulation. Fructose that exceeds an individual's intestinal absorptive and metabolic capacity "spills over" first into the gut lumen, altering the intestinal environment and microbiota, and, when further exceeded, into the liver where it is metabolized [4-9]. These metabolic disturbances are associated with chronic lowgrade inflammation, a recognized contributor to the develop-

^aDepartment of Breast Surgical Oncology, Funabashi Municipal Medical Center, Chiba 273-8588, Japan

^bDepartment of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan

^cDepartment of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA

^dDepartment of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA

ment and progression of various type of cancers [5].

Recent studies have elucidated mechanisms by which excessive fructose intake may facilitate tumorigenesis. For instance, fructose has been shown to induce inflammatory activation in macrophages, enhancing the pro-inflammatory state of the tumor microenvironment. In addition to its metabolic effects, unabsorbed fructose in the gut has been shown to undergo non-enzymatic fructosylation of peptides, including incretins, leading to the in situ formation of fructose-derived advanced glycation end-products (FruAGEs). These FruAGEs exhibit high affinity for receptors of advanced glycation endproducts (RAGEs), thereby promoting pro-inflammatory signaling. This mechanism, known as the "Fructositis hypothesis," has been supported by a series of studies, with Yuan et al providing the most recent evidence that FruAGEs are generated during simulated gastrointestinal digestion [10]. Furthermore, epidemiologic evidence links HFCS intake with disproportionately higher asthma risk among young Black adults, further supporting a role of FruAGEs in immune and inflammatory responses [11]. Additionally, fructose can contribute to the metabolic reprogramming of cancer cells, supporting their proliferation and survival. Animal models have demonstrated that high-fructose diets can exacerbate tumor growth in colorectal cancer, independent of obesity [5, 12, 13].

Furthermore, epidemiological data suggest a correlation between high intake of sugar-sweetened beverages, often containing HFCS, and increased cancer risk [14, 15]. These findings underscore the importance of understanding the role of dietary sugars in cancer development.

Given the pervasive presence of HFCS in the modern diet and its potential implications in cancer biology, this article aims to comprehensively review the current evidence linking HFCS consumption to inflammation and cancer. We will explore the metabolic pathways influenced by fructose, its impact on inflammatory processes, and the resultant effects on carcinogenesis.

Metabolism and Absorption of HFCS

HFCS, a mixture of free fructose and glucose, exhibits unique metabolic characteristics distinct from those of glucose. Fructose is primarily absorbed via the GLUT5 transporter in the small intestine, where it is largely converted to glucose and organic acids by enterocytes. When the absorptive and metabolic capacity of the intestine is exceeded, the remaining fructose "spills over" into the liver for further metabolism [6]. Unlike glucose, fructose does not directly stimulate insulin secretion and bypasses the rate-limiting steps of glycolysis, thereby entering metabolic pathways that promote DNL. In addition, unabsorbed fructose in the gut can interfere with incretin signaling by fructosylating and deactivating glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP), which may further contribute to insulin insufficiency [16, 17].

Recent studies have highlighted that excessive intake of HFCS is associated with hepatic fat accumulation, insulin resistance, dyslipidemia, and elevated serum uric acid levels

[17]. Recent studies have also provided new insights into the hepatic effects of excessive fructose consumption. Unlike sucrose, HFCS represents a relatively recent introduction into the food supply, with widespread adoption occurring in the United States during the early 1980s. Moreover, independent laboratory analyses indicate that some commercially available sweetened beverages may contain fructose-to-glucose ratios exceeding the commonly cited 55%, thereby increasing excess-free-fructose exposure beyond levels generally recognized as safe. Such formulations can promote fructose malabsorption and altered gut health, mechanisms increasingly implicated across chronic diseases [18]. Ecologically, HFCS production and use rose steeply from 1980 through the late 1990s in the USA, overlapping with rising incidence patterns observed for several cancers, including liver and pancreatic cancer, and with increasing colorectal cancer incidence among younger adults; these site-specific trends warrant further investigation into potential links with excess-free-fructose exposure [19, 20]. One such study made healthy male participants consume beverages sweetened with either fructose or sucrose for 8 weeks and demonstrated a significant increase in hepatic DNL [21]. Moreover, multiple ¹H-magnetic resonance spectroscopy (MRS)-based studies have shown that fructosecontaining beverages contribute to an increased risk of nonalcoholic fatty liver disease (NAFLD), even over short durations of intake [22-24].

Fructose metabolism rapidly depletes intracellular ATP, leading to increased uric acid production, which has been implicated in hypertension and renal dysfunction. Adolescents with high consumption of HFCS-sweetened beverages were found to have significantly elevated serum uric acid and triglyceride concentrations [25]. However, meta-analyses of isocaloric substitution trials have suggested that fructose may not exert adverse effects on low-density lipoprotein (LDL) cholesterol or glycemic indices under conditions of energy balance [26]. It is important to note, however, that many of these studies were conducted by industry-sponsored groups with potential conflicts of interest. A more recent systematic review and meta-analysis from the same research group, focusing on fructose-containing foods and inflammatory biomarkers, found that eight out of 10 trials including fructose or HFCS showed significant adverse effects, whereas the two that did not excluded individuals with fructose malabsorption either directly or indirectly [27]. No significant effects were observed in studies of fruit or most fruit juices, except apple juice, which is particularly high in unpaired fructose. Collectively, these findings suggest that the distinguishing factor may be excess unpaired fructose rather than energy balance per se.

Recent research also suggested that variability in intestinal fructose absorption, potentially influenced by GLUT5 expression, can result in malabsorption and subsequent delivery of fructose to the colon *in vitro* [28]. This can lead to gut microbiota dysbiosis, contributing to impaired intestinal barrier function and systemic low-grade inflammation - factors increasingly recognized in the pathogenesis of metabolic disorders and potentially cancer. In addition, gut-resident advanced glycation end-products (AGEs) themselves have been associated

with gut dysbiosis, further supporting a link between dietary fructose, FruAGE formation, and altered intestinal microbial ecology [29-32].

In animal models, HFCS consumption has been shown to induce greater insulin resistance and adipose tissue inflammation than high-fat diets [33]. Short-term consumption of HFCSsweetened beverages has been shown to increase hepatic fat accumulation and reduce insulin sensitivity, indicating a potential risk for the development of metabolic disorders [34]. Moreover, fructose intake has been associated with increased visceral adiposity, adverse alterations in circulating lipid profiles, and further reductions in insulin sensitivity, all of which may contribute to the pathogenesis of metabolic syndrome [35]. Furthermore, the lack of stimulation of satiety hormones such as insulin and leptin by fructose may facilitate excess caloric intake and weight gain, reinforcing its obesogenic potential. Beyond overconsumption, however, recent evidence emphasizes that the unique presence of unpaired fructose in HFCS can exceed intestinal absorptive capacity, leading to malabsorption, altered gut microbial composition, and inflammatory responses. In animal models, dietary fructose has been shown to worsen colitis through gut microbiota-dependent mechanisms [36]. Clinically, fructose malabsorption is prevalent among patients with irritable bowel syndrome even after excluding small intestinal bacterial overgrowth, supporting the pathophysiological relevance of excess unabsorbed fructose [37].

Despite its metabolic drawbacks, fructose possesses a low glycemic index. In controlled settings, moderate fructose intake (< 60 g/day) has been shown to reduce HbA1c levels in patients with type 2 diabetes without adversely affecting fasting glucose or insulin [26]. However, it should be noted that these trials did not systematically assess fructose malabsorption status among participants, which may represent an important limitation given that malabsorption can significantly modify metabolic and inflammatory outcomes. Mechanistically, fructose may exert glucose-sparing effects by enhancing glucokinase activity, promoting glycogen synthesis, and suppressing hepatic glucose output.

HFCS and Inflammation

Emerging evidence highlights a mechanistic link between HFCS consumption and chronic low-grade inflammation: a key component of the pathophysiology of metabolic syndrome and type 2 diabetes [1, 38, 39]. Several studies have reported that excessive fructose intake elevates biomarkers of inflammation and oxidative stress, including reactive oxygen species and proinflammatory cytokines such as Toll-like receptor 4 (TLR-4), C-reactive protein (CRP), interleukin (IL)-6, E-selectin, and plasminogen activator inhibitor 1 (PAI-1) [39-44]. In rodent models, HFCS has been shown to induce more pronounced adipose tissue inflammation than high-fat diets, in part by enhancing proinflammatory macrophage infiltration and promoting insulin resistance via ghrelin receptor-mediated pathways [33]. Furthermore, deficiency of the ghrelin receptor (GHS-R) has been shown to attenuate HFCS-induced adipose tissue inflammation and insulin resistance [33]. Activation of peroxisome proliferator-activated receptor-delta (PPAR-δ) has also been shown to mitigate HFCS-induced renal and systemic inflammation [45, 46].

Fructose also appears to modulate immune signaling through the upregulation of multiple cytokines, including interferon (IFN)- γ , IL-1 β , IL-6, tumor necrosis factor (TNF)- α , and IL-2, in both adipose and skeletal muscle tissues [47, 48].

In addition to these systemic effects, chronic fructose exposure has been implicated in gut microbiota dysbiosis. Studies have demonstrated that excessive intake of fructose and artificial sweeteners reduces microbial diversity and shifts microbial composition toward proinflammatory compositions, potentially compromising intestinal barrier integrity and contributing to systemic endotoxemia [49-51].

These microbiota-mediated changes may link HFCS intake to inflammation-associated carcinogenesis. Inflammatory transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB), which are activated downstream of microbial and metabolic signals, play central roles in promoting tumorigenesis under chronic inflammatory conditions [52-54]. Collectively, these findings underscore the proinflammatory and immunomodulatory potential of HFCS in the development of metabolic and neoplastic diseases.

HFCS and Cancer

Recent research suggests that HFCS may directly contribute to cancer development and progression beyond its indirect effects through obesity and metabolic disorders. Epidemiologically, conditions strongly linked to excessive fructose intake - such as obesity and type 2 diabetes - are well-established risk factors for multiple cancers, including colorectal, pancreatic, breast, liver, and endometrial cancers [5, 55].

One of the key mechanisms by which HFCS promotes cancer is the creation of a metabolic environment favorable to tumorigenesis. HFCS-rich diets increase blood glucose and insulin levels, activating the insulin/IGF-1 signaling pathway that enhances tumor growth and inhibits apoptosis [56-59]. This pathway, through phosphatidylinositol-3-kinase-Aktmammalian target of rapamycin (PI3K-Akt-mTOR) activation, supports cancer cell proliferation and metabolic reprogramming.

Preclinical studies have demonstrated that HFCS can directly promote tumor growth. Oral administration of HFCS (45% glucose, 55% fructose) in adenomatous polyposis coli (APC) mutant mice has been shown to significantly increase tumor size and grade, independent of obesity or presence of metabolic syndrome. Within cancer cells, rapid fructose metabolism enhances glycolysis and fatty acid synthesis, thereby fueling cell proliferation [55].

Furthermore, a study found that HFCS consumption promoted tumor growth in animal models of melanoma, breast, and cervical cancer [13]. Interestingly, this effect did not stem from fructose utilization by the tumor cells themselves, but rather from liver metabolism of fructose into lipid mediators such as LPC, which supported tumor cell growth.

Additionally, in human colorectal cancer cell lines (Caco-2 and HT29), fructose was shown to inhibit receptor-interacting protein (RIP)-dependent necroptosis under hypoxic conditions, thereby promoting tumor cell survival [60]. This effect was linked to enhanced glycolytic activity, suggesting that fructose may aid metabolic adaptation in the tumor microenvironment.

Enzymes involved in fructose metabolism, such as ketohexokinase (KHK), and the fructose transporter GLUT5, have been implicated in cancer cell growth and chemoresistance [61, 62]. Inhibiting their expression has been proposed as a strategy to suppress tumor progression.

In pancreatic cancer cells, fructose has been shown to promote nucleotide synthesis via the non-oxidative branch of the pentose phosphate pathway (PPP), particularly through upregulation of transketolase (TKT) [63]. This enables tumor cell proliferation even under glucose-limited conditions. Targeting fructolytic enzymes such as KHK-C has been proposed as a therapeutic target to suppress tumor growth in colorectal and liver cancers [57].

Overexpression of fructose transporters such as GLUT5 (SLC2A5) has been observed in breast, colorectal, lung, and pancreatic cancers [64, 65], suggesting a role for fructose metabolism in enhancing tumor invasion and metastatic potential.

Additionally, an autopsy study of lung cancers revealed that expression of GLUT3 and GLUT5 was elevated in liver metastases compared to primary tumors, suggesting that fructose metabolism may support survival and proliferation in metastatic sites [66].

Epidemiological studies have yielded mixed findings on the association between fructose intake and cancer risk. Positive associations have been reported for colorectal [67, 68], pancreatic [69], and breast cancers [70], while studies on prostate and lung cancer have shown negative or null associations [59, 71]. These discrepancies may stem from differences in fructose sources (e.g., natural vs. synthetic), dietary backgrounds, and individual microbiome profiles. Another potential limitation of epidemiological studies is time-varying confounding, as older participants typically consume fewer HFCS-sweetened beverages than younger individuals. Consequently, studies restricted to older cohorts may underestimate the true long-term cancer risk associated with HFCS intake. Longitudinal studies that begin in younger populations and follow participants over time are therefore likely to provide more accurate assessments. Consistent with this, US CDC data demonstrate that sugar-sweetened beverage intake decreases with age.

Interestingly, patients with pancreatic cancer have been found to have fasting serum fructose levels three times higher than healthy individuals [72]. Furthermore, in stage III colorectal cancer patients, higher total fructose intake has been associated with worse recurrence-free survival [73].

Taken together, these findings support that HFCS and fructose may influence multiple aspects of cancer biology including tumor metabolism, proliferation signaling, invasion, and metastasis. Future research should aim to distinguish the effects of fructose metabolism itself from those of excess caloric intake and identify subgroups of patients who may be particularly sensitive to fructose-driven tumor progression.

Conclusion

HFCS is a widely used sweetener in modern diets, and exerts profound effects on metabolic health and carcinogenesis through a complex network of pathways. Beyond its well-established association with obesity and insulin resistance, emerging evidence highlights a direct role for HFCS and fructose in promoting chronic inflammation, modulating immune responses, and facilitating cancer cell proliferation, survival, and metastasis.

Fructose metabolism supports tumor growth through enhanced glycolysis, lipogenesis, and nucleotide synthesis, particularly under nutrient-deprived or hypoxic conditions. Inflammatory and microbiota-mediated pathways further exacerbate the tumor-promoting environment, linking dietary sugar intake to oncogenic signaling cascades. Although epidemiological findings remain mixed, studies have consistently implicated high fructose intake in the increased risk and poor prognosis of several cancer types, including colorectal and pancreatic cancer.

Given the pervasive consumption of HFCS in processed foods and beverages, these findings underscore the urgent need for public health interventions, nutritional education, and further mechanistic studies. Future research should focus on identifying vulnerable populations, characterizing fructose-specific metabolic reprogramming in tumors, and exploring dietary modification as an adjunct to cancer prevention and therapy.

Acknowledgments

The authors have no acknowledgments to declare.

Financial Disclosure

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author Contributions

TA: conceptualization and writing - original draft; GO, KH, and OM: writing - review and editing; KT: supervision and writing - review and editing.

Data Availability

The authors declare that data supporting the findings of this study are available within the article.

References

- 1. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79(4):537-543. doi pubmed
- 2. Ferder L, Ferder MD, Inserra F. The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Rep. 2010;12(2):105-112. doi pubmed
- Ventura EE, Davis JN, Goran MI. Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity (Silver Spring). 2011;19(4):868-874. doi pubmed
- 4. Benardout M, Le Gresley A, ElShaer A, Wren SP. Fructose malabsorption: causes, diagnosis and treatment. Br J Nutr. 2022;127(4):481-489. doi pubmed
- Ting KKY. Fructose-induced metabolic reprogramming of cancer cells. Front Immunol. 2024;15:1375461. doi pubmed
- Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018;27(2):351-361.e353. doi pubmed
- Beisner J, Gonzalez-Granda A, Basrai M, Damms-Machado A, Bischoff SC. Fructose-induced intestinal microbiota shift following two types of short-term highfructose dietary phases. Nutrients. 2020;12(11). doi pubmed
- 8. Ferraris RP, Choe JY, Patel CR. Intestinal absorption of fructose. Annu Rev Nutr. 2018;38:41-67. doi pubmed
- Jones HF, Butler RN, Brooks DA. Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol. 2011;300(2):G202-206. doi pubmed
- 10. Yuan X, Feng S, Li J, Guo R, Nie C, Zhai R, Tu A, et al. Generation of advanced glycation end products from glycated protein or fructose/glyoxal-protein adducts under in vitro simulated gastrointestinal digestion. Food Chem. 2025;463(Pt 2):141175. doi pubmed
- 11. DeChristopher LR, Tucker KL. Disproportionately higher asthma risk and incidence with high fructose corn syrup, but not sucrose intake, among Black young adults: the CARDIA Study. Public Health Nutr. 2025;28(1):e92. doi pubmed
- 12. Shen Z, Liu Z, Wang H, Landrock D, Noh JY, Zang QS, Lee CH, et al. Fructose induces inflammatory activation in macrophages and microglia through the nutrient-sensing ghrelin receptor. FASEB J. 2025;39(4):e70412. doi pubmed
- 13. Fowle-Grider R, Rowles JL, 3rd, Shen I, Wang Y, Schwaiger-Haber M, Dunham AJ, Jayachandran K, et al. Dietary fructose enhances tumour growth indirectly via interorgan lipid transfer. Nature. 2024;636(8043):737-744. doi pubmed
- 14. Epner M, Yang P, Wagner RW, Cohen L. Understanding the link between sugar and cancer: an examination of the preclinical and clinical evidence. Cancers (Basel). 2022;14(24). doi pubmed

- 15. Hasan N, Yazdanpanah O, Khaleghi B, Benjamin DJ, Kalebasty AR. The role of dietary sugars in cancer risk: A comprehensive review of current evidence. Cancer Treat Res Commun. 2025;43:100876. doi pubmed
- 16. Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr. 1993;58(5 Suppl):754S-765S. doi pubmed
- 17. Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90(1):23-46. doi pubmed
- 18. DeChristopher LR. 40 years of adding more fructose to high fructose corn syrup than is safe, through the lens of malabsorption and altered gut health-gateways to chronic disease. Nutr J. 2024;23(1):16. doi pubmed
- 19. Yao Z, Dai C, Yang J, Xu M, Meng H, Hu X, Lin N. Timetrends in liver cancer incidence and mortality rates in the U.S. from 1975 to 2017: a study based on the Surveillance, Epidemiology, and End Results database. J Gastrointest Oncol. 2023;14(1):312-324. doi pubmed
- Gordon-Dseagu VL, Devesa SS, Goggins M, Stolzenberg-Solomon R. Pancreatic cancer incidence trends: evidence from the Surveillance, Epidemiology and End Results (SEER) population-based data. Int J Epidemiol. 2018;47(2):427-439. doi pubmed
- 21. Geidl-Flueck B, Hochuli M, Nemeth A, Eberl A, Derron N, Kofeler HC, Tappy L, et al. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J Hepatol. 2021;75(1):46-54. doi pubmed
- 22. Le KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P, Boesch C, et al. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr. 2006;84(6):1374-1379. doi pubmed
- 23. Le KA, Ith M, Kreis R, Faeh D, Bortolotti M, Tran C, Boesch C, et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr. 2009;89(6):1760-1765. doi pubmed
- 24. Ngo Sock ET, Le KA, Ith M, Kreis R, Boesch C, Tappy L. Effects of a short-term overfeeding with fructose or glucose in healthy young males. Br J Nutr. 2010;103(7):939-943. doi pubmed
- 25. Chan TF, Lin WT, Chen YL, Huang HL, Yang WZ, Lee CY, Chen MH, et al. Elevated serum triglyceride and retinol-binding protein 4 levels associated with fructose-sweetened beverages in adolescents. PLoS One. 2014;9(1):e82004. doi pubmed
- 26. Cozma AI, Sievenpiper JL, de Souza RJ, Chiavaroli L, Ha V, Wang DD, Mirrahimi A, et al. Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care. 2012;35(7):1611-1620. doi pubmed
- Qi X, Chiavaroli L, Lee D, Ayoub-Charette S, Khan TA, Au-Yeung F, Ahmed A, et al. Effect of important food sources of fructose-containing sugars on inflammatory biomarkers: a systematic review and meta-analysis of controlled feeding trials. Nutrients. 2022;14(19). doi pubmed

- 28. Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, et al. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem. 2009;284(8):5056-5066. doi pubmed
- Aschner M, Skalny AV, Gritsenko VA, Kartashova OL, Santamaria A, Rocha JBT, Spandidos DA, et al. Role of gut microbiota in the modulation of the health effects of advanced glycation end‑products (Review). Int J Mol Med. 2023;51(5). doi pubmed
- 30. Payne AN, Chassard C, Lacroix C. Gut microbial adaptation to dietary consumption of fructose, artificial sweeteners and sugar alcohols: implications for host-microbe interactions contributing to obesity. Obes Rev. 2012;13(9):799-809. doi pubmed
- 31. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470-1481. doi pubmed
- 32. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759-771. doi pubmed
- 33. Ma X, Lin L, Yue J, Pradhan G, Qin G, Minze LJ, Wu H, et al. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance. Nutr Diabetes. 2013;3(12):e99. doi pubmed
- 34. Sigala DM, Hieronimus B, Medici V, Lee V, Nunez MV, Bremer AA, Cox CL, et al. The dose-response effects of consuming high fructose corn syrup-sweetened beverages on hepatic lipid content and insulin sensitivity in young adults. Nutrients. 2022;14(8). doi pubmed
- 35. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-1334. doi pubmed
- 36. Montrose DC, Nishiguchi R, Basu S, Staab HA, Zhou XK, Wang H, Meng L, et al. Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis. Cell Mol Gastroenterol Hepatol. 2021;11(2):525-550. doi pubmed
- 37. Jung KW, Seo M, Cho YH, Park YO, Yoon SY, Lee J, Yang DH, et al. Prevalence of fructose malabsorption in patients with irritable bowel syndrome after excluding small intestinal bacterial overgrowth. J Neurogastroenterol Motil. 2018;24(2):307-316. doi pubmed
- 38. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-867. doi pubmed
- 39. Vasiljevic A, Bursac B, Djordjevic A, Milutinovic DV, Nikolic M, Matic G, Velickovic N. Hepatic inflammation induced by high-fructose diet is associated with altered 11betaHSD1 expression in the liver of Wistar rats. Eur J Nutr. 2014;53(6):1393-1402. doi pubmed
- 40. Rippe JM, Angelopoulos TJ. Sucrose, high-fructose corn syrup, and fructose, their metabolism and poten-

- tial health effects: what do we really know? Adv Nutr. 2013;4(2):236-245. doi pubmed
- 41. Price KD, Price CS, Reynolds RD. Hyperglycemia-induced ascorbic acid deficiency promotes endothelial dysfunction and the development of atherosclerosis. Atherosclerosis. 2001;158(1):1-12. doi pubmed
- 42. Liu S, Manson JE, Buring JE, Stampfer MJ, Willett WC, Ridker PM. Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am J Clin Nutr. 2002;75(3):492-498. doi pubmed
- 43. Charrez B, Qiao L, Hebbard L. The role of fructose in metabolism and cancer. Horm Mol Biol Clin Investig. 2015;22(2):79-89. doi pubmed
- 44. Ceriello A, Bortolotti N, Crescentini A, Motz E, Lizzio S, Russo A, Ezsol Z, et al. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest. 1998;28(4):329-333. doi pubmed
- 45. Collino M, Benetti E, Rogazzo M, Mastrocola R, Yaqoob MM, Aragno M, Thiemermann C, et al. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-delta agonism correlates with impaired NLRP3 inflammasome activation. Biochem Pharmacol. 2013;85(2):257-264. doi pubmed
- 46. Collino M, Benetti E, Rogazzo M, Mastrocola R, Yaqoob MM, Aragno M, Theimermann C, et al. Corrigendum to "Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-delta agonism correlates with impaired NLRP3 inflammasome activation" [Biochem. Pharmacol. 85(2) (2013) 257-264]. Biochem Pharmacol. 2024;222:116060. doi pubmed
- 47. Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients. 2017;9(4). doi pubmed
- 48. Lodge M, Dykes R, Kennedy A. Regulation of fructose metabolism in nonalcoholic fatty liver disease. Biomolecules. 2024;14(7). doi pubmed
- 49. Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr. 2023;62(8):3113-3124. doi pubmed
- 50. Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon. 2023;9(8):e18896. doi pubmed
- Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. Fructose Promotes Leaky Gut, Endotoxemia, and Liver Fibrosis Through Ethanol-Inducible Cytochrome P450-2E1-Mediated Oxidative and Nitrative Stress. Hepatology. 2021;73(6):2180-2195. doi pubmed
- 52. Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang WC, Hait NC, et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell. 2013;23(1):107-120. doi pubmed
- 53. Han B, Zhang Y, Feng X, Yang J, Wang B, Fang J, Wang Z, et al. The power of microbes: the key role of gut microbiota in the initiation and progression of colorectal can-

- cer. Front Oncol. 2025;15:1563886. doi pubmed
- 54. Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, et al. NF-kappaB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53. doi pubmed
- 55. Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang SK, Murphy CJ, Pauli C, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019;363(6433):1345-1349. doi pubmed
- 56. Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev. 2015;95(3):727-748. doi pubmed
- 57. Peng C, Yang P, Zhang D, Jin C, Peng W, Wang T, Sun Q, et al. KHK-A promotes fructose-dependent colorectal cancer liver metastasis by facilitating the phosphorylation and translocation of PKM2. Acta Pharm Sin B. 2024;14(7):2959-2976. doi pubmed
- 58. Kaaks R, Lukanova A. Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proc Nutr Soc. 2001;60(1):91-106. doi pubmed
- 59. Giovannucci E, Rimm EB, Wolk A, Ascherio A, Stampfer MJ, Colditz GA, Willett WC. Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res. 1998;58(3):442-447. pubmed
- 60. Huang XH, Huang CY. Fructose shields human colorectal cancer cells from hypoxia-induced necroptosis. NPJ Sci Food. 2024;8(1):71. doi pubmed
- 61. Guccini I, Tang G, To TT, Di Rito L, Le Blanc S, Strobel O, D'Ambrosio M, et al. Genetic ablation of ketohexokinase C isoform impairs pancreatic cancer development. iScience. 2023;26(8):107368. doi pubmed
- 62. Cui Y, Tian J, Wang Z, Guo H, Zhang H, Wang Z, Liu H, et al. Fructose-Induced mTORC1 Activation Promotes Pancreatic Cancer Progression through Inhibition of Autophagy. Cancer Res. 2023;83(24):4063-4079. doi pubmed
- 63. Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 2010;70(15):6368-6376. doi pubmed
- 64. Godoy A, Ulloa V, Rodriguez F, Reinicke K, Yanez AJ, Garcia Mde L, Medina RA, et al. Differential subcel-

- lular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol. 2006;207(3):614-627. doi pubmed
- 65. Reinicke K, Sotomayor P, Cisterna P, Delgado C, Nualart F, Godoy A. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J Cell Biochem. 2012;113(2):553-562. doi pubmed
- Kurata T, Oguri T, Isobe T, Ishioka S, Yamakido M. Differential expression of facilitative glucose transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn J Cancer Res. 1999;90(11):1238-1243. doi pubmed
- 67. Alic L, Niessen WJ, Veenland JF. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS One. 2014;9(10):e110300. doi pubmed
- 68. Higginbotham S, Zhang ZF, Lee IM, Cook NR, Buring JE, Liu S. Dietary glycemic load and breast cancer risk in the Women's Health Study. Cancer Epidemiol Biomarkers Prev. 2004;13(1):65-70. doi pubmed
- 69. Jiao L, Flood A, Subar AF, Hollenbeck AR, Schatzkin A, Stolzenberg-Solomon R. Glycemic index, carbohydrates, glycemic load, and the risk of pancreatic cancer in a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1144-1151. doi pubmed
- Romieu I, Lazcano-Ponce E, Sanchez-Zamorano LM, Willett W, Hernandez-Avila M. Carbohydrates and the risk of breast cancer among Mexican women. Cancer Epidemiol Biomarkers Prev. 2004;13(8):1283-1289. pubmed
- 71. Tasevska N, Jiao L, Cross AJ, Kipnis V, Subar AF, Hollenbeck A, Schatzkin A, et al. Sugars in diet and risk of cancer in the NIH-AARP Diet and Health Study. Int J Cancer. 2012;130(1):159-169. doi:pubmed
- 72. Hui H, Huang D, McArthur D, Nissen N, Boros LG, Heaney AP. Direct spectrophotometric determination of serum fructose in pancreatic cancer patients. Pancreas. 2009;38(6):706-712. doi pubmed
- 73. Meyerhardt JA, Sato K, Niedzwiecki D, Ye C, Saltz LB, Mayer RJ, Mowat RB, et al. Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Natl Cancer Inst. 2012;104(22):1702-1711. doi pubmed