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E2F5 Overexpression in Laryngeal Squamous Cell
Carcinoma: Associations With Neutrophil
Extracellular Traps in the Tumor
Microenvironment
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Abstract

Background: Laryngeal squamous cell carcinoma (LSCC) is a com-
mon malignant tumor of the head and neck, associated with smoking
and excessive alcohol consumption. The objective was to investigate
the expression pattern of E2F transcription factor 5 (E2F5) in LSCC
and its association with neutrophil extracellular traps (NETs), eluci-
dating its role in the tumor microenvironment.

Methods: At the cellular level, single-cell RNA sequencing (scRNA-
seq) was employed to analyze the expression of E2F5 and NETs-re-
lated genes (S100A8, SI00A9, LCN2, etc.). At the tissue level, spa-
tial transcriptomics (ST) was used to examine the E2F5 expression
pattern. At the mRNA level, E2F5 expression was assessed through

Manuscript submitted May 6, 2025, accepted October 22, 2025
Published online December 17, 2025

aDepartment of Pathology, The First Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
®Department of Otolaryngology, Head and Neck Surgery, The First Affiliated
Hospital of Guangxi Medical University, Nanning, China

“Department of Pathology, People’s Hospital of Lingshan County, Qinzhou,
Guangxi Zhuang Autonomous Region, China

dDepartment of Radiotherapy, The Second Affiliated Hospital of Guangxi
Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
¢School of Information and Management, Guangxi Medical University, Nan-
ning, Guangxi Zhuang Autonomous Region 530021, China

Department of Medical Oncology, The First Affiliated Hospital of Guangxi
Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021,
China

¢International Cooperation and External Exchange Department, The First Af-
filiated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang
Autonomous Region 530021, China

"These authors contributed equally to this study.

iCorresponding Authors: Jia Shu Jiang, International Cooperation and Exter-
nal Exchange Department, The First Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
Email: jiangjiashul15@]163.com; Yi Wu Dang, Department of Pathology, The
First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi
Zhuang Autonomous Region 530021, China. Email: dangyiwu@gxmu.edu.cn

doi: https://doi.org/10.14740/wjon2610

mRNA expression profiling, and at the protein level, expression was
validated using immunohistochemistry (IHC) on tissue specimens, in-
cluding 10 LSCC cases (laryngeal, hypopharyngeal, and oropharyn-
geal squamous cell carcinomas) and 10 non-LSCC controls (benign
lesions such as mucoceles, hemangiomas, and polyps). Clustered
regularly interspaced short palindromic repeats (CRISPR) knockout
screening combined with the CERES algorithm was utilized to evalu-
ate the impact of E2F5 on LSCC cell line proliferation, with nega-
tive/positive dependency scores indicating suppression/promotion of
growth, respectively. Single-sample Gene Set Enrichment Analysis
(ssGSEA) was used to analyze the correlation between E2F5 and im-
mune cells, and chromatin immunoprecipitation sequencing (ChIP-
seq) was performed to validate the transcriptional regulation of
NETs-related genes by E2F5. Statistical analyses included Wilcoxon,
standardized mean difference (SMD), receiver operating character-
istic (ROC), and summary receiver operating characteristic (SROC).

Results: E2F5 exhibited high expression in LSCC epithelial cells and
tissues, with elevated expression at both mRNA and protein levels
(SMD = 0.24, 95% confidence interval (CI) = 0.0309 - 0.448, sSROC
area under the curve (AUC) = 0.71, IHC P=7.2 x 10°°, ROC AUC =
1). Knockdown of E2FS5 significantly inhibited proliferation in LSCC
cell lines (e.g., BICR31, BICR16) (inhibition score < 0). High E2F5
expression was positively correlated with T-helper cells and natural
killer (NK) CD56bright cells (R = 0.251, 0.175, P < 0.05) and nega-
tively correlated with neutrophils and Th17 cells (R =-0.293, -0.260,
P < 0.05). Cellular and tissue-level analyses revealed high NETs ex-
pression in LSCC, with E2F5 also highly expressed in NETs-related
cells and regions. ChIP-seq analysis confirmed that E2F5 regulates
NETs-related genes. Functional enrichment analysis indicated that
E2F5-related genes are involved in transcriptional regulation, chro-
matin organization, and immune regulation.

Conclusion: E2F5 is highly expressed in LSCC and is associated
with the regulation of NETs-related genes. It may contribute to tumor
proliferation and immune evasion by reshaping the tumor microenvi-
ronment, highlighting E2F5 as a potential therapeutic target that war-
rants further functional validation.

Keywords: Laryngeal squamous cell carcinoma; E2F5; Neutrophil ex-
tracellular traps; Tumor microenvironment; Single-cell RNA sequencing
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Introduction

Laryngeal squamous cell carcinoma (LSCC), one of the most
prevalent malignant tumors among head and neck squamous
cell carcinomas (HNSCC), originates from the mucosal epi-
thelium of the larynx and is strongly associated with smoking,
excessive alcohol consumption, and human papillomavirus
infection [1, 2]. Despite advances in diagnosis and treatment,
LSCC remains highly invasive with frequent recurrence and
poor prognosis [3, 4], underscoring the need to further eluci-
date its molecular mechanisms and tumor microenvironment
to guide precision therapy. The rapid development of technolo-
gies such as single-cell RNA sequencing (scRNA-seq), spatial
transcriptomics (ST), and integrative multi-omics analyses has
provided novel perspectives for uncovering the cellular com-
position and molecular regulatory networks of LSCC.

In the realm of cancer molecular regulation, the transcrip-
tion factor E2F5, a member of the E2F family, has increas-
ingly garnered attention. The E2F family plays a central role
in regulating critical biological processes, including cell cycle
progression [5], DNA replication [6], and apoptosis [7]. Aber-
rant expression of E2F family members is associated with the
development and progression of various cancers. However, the
expression pattern and functional role of E2F5 in LSCC have
not yet been systematically investigated. Given the demon-
strated potential of E2F5 in regulating tumor proliferation and
the microenvironment in other cancers, exploring its role in
LSCC may provide novel insights into the molecular mecha-
nisms underlying this disease.

Within the tumor microenvironment, neutrophil extracel-
lular traps (NETs) have emerged as a critical immune compo-
nent, attracting significant interest in cancer research in recent
years. NETs are web-like structures released by neutrophils,
enriched with hallmark molecules such as SI00A8, SI00A9,
and LCN2. Studies indicate that NETs not only contribute
to antibacterial defense but may also exacerbate tumor pro-
gression by promoting inflammatory responses [8], immune
evasion [9], and tumor cell invasion [10]. For instance, re-
search has shown that ST00A8/A9 amplifies neuroinflamma-
tory responses in traumatic brain injury by enhancing NETs
formation [11]. Additionally, in liver disease-related studies,
LCN2 has been shown to be expressed in NETs, enhancing
antibacterial capacity through synergistic interactions between
neutrophils and hepatocytes [12]. In LSCC, NETs may pro-
mote tumor cell proliferation and invasion by releasing pro-
inflammatory factors and modulating the expression of tumor
microenvironment-related genes. As a transcription factor,
E2F5 may participate in shaping the LSCC tumor microen-
vironment by directly or indirectly regulating the expression
of NETs hallmark genes (e.g., SIO0A8/A9, LCN2), thereby
influencing tumor progression. However, the specific molecu-
lar mechanisms and potential synergistic interactions between
E2F5 and NETs in LSCC remain to be elucidated.

This study integrates scRNA-seq, ST, mRNA profiling,
and immunohistochemistry (IHC) to systematically investi-
gate E2F5 expression in LSCC and its association with NETs.
We employ a multimodal strategy: scRNA-seq and ST capture
cellular and tissue-level patterns but are limited by dissocia-

tion bias and spatial resolution; bulk RNA profiling and ITHC
provide cross-cohort and protein-level validation; clustered
regularly interspaced short palindromic repeats (CRISPR)-
CERES assesses functional dependency, while single-sample
Gene Set Enrichment Analysis (ssGSEA) and ChIP-seq link
E2F5 to immune infiltration and transcriptional regulation of
NETs-related genes.

Materials and Methods

scRNA-seq analysis of E2FS in LSCC

scRNA-seq analysis of E2F5 utilized LSCC-related scRNA
datasets (GSMS8002074, GSM8002075, GSM8002076, from
GSE252490), accessible via the Gene Expression Omnibus
(GEO) database. Data preprocessing and filtering were per-
formed using the “Seurat” package [13], removing genes ex-
pressed in fewer than three cells and cells expressing fewer than
50 genes. Quality control retained cells with gene expression
counts > 500 and mitochondrial content < 25%. After data nor-
malization, principal component analysis (PCA) was conduct-
ed for dimensionality reduction, selecting the top 20 principal
components for clustering analysis. Secondary dimensionality
reduction was performed using the uniform manifold approxi-
mation and projection (UMAP) algorithm. LSCC-related epi-
thelial cells were identified using KRTS, KRT14, TP63, and
CDKN2A markers, while NETs-related cells were identified us-
ing SI00A8, FUT4, LCN2, S100A9, and HSP3 A markers.

Spatial transcriptomics analysis of E2F5 in LSCC

LSCC-related scRNA-seq were obtained from the GEO da-
tabase under the series accession number GSE252490. This
dataset included three individual samples: GSM8002074,
GSM8002075, and GSM8002076. Data were processed us-
ing the “Seurat” package, with normalization performed via
the SCTransform method to standardize the dataset, specify-
ing spatial data usage and disabling verbose output to simplify
computation. The SpatialDimPlot function generated spatial
dimension figures, visualizing cell spatial distribution in sam-
ples. LSCC tissue regions were identified using KRT5, KRT 14,
TP63, and CDKN2A markers. Cell spatial locations were visu-
alized alongside E2F5 expression patterns, and NETs-related
tissue regions were identified using SI00AS, FUT4, LCN2,
S100A9, and HSP3A markers.

E2FS mRNA expression profiling in LSCC tissue samples

To investigate E2F5 mRNA expression differences between
LSCC and non-LSCC samples, E2F5 expression data were col-
lected from multiple databases, including GEO, ICGC, GTEx,
SRA, TCGA, PubMed, and ArrayExpress. The search formula
was: ((laryngeal OR laryngeal squamous cell carcinoma OR
LSCC OR HNSCC OR SCC OR carcinoma of larynx OR ke-
hlkopfkrebs OR laryngopharynx) AND (tumor OR neoplasm
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OR phyma OR malignancy OR malignant OR malignance OR
cancer OR carcinoma OR carcinosis)). Clear inclusion and ex-
clusion criteria were established: 1) only human primary LSCC
tissues were analyzed; 2) experimental cohorts included LSCC
diagnostic tissue samples, with normal tissue samples as con-
trols; 3) both experimental and control groups required > 3 sam-
ples. Exclusion criteria applied to datasets with < 3 samples,
unreported E2F5 expression, or inclusion of metastatic or recur-
rent LSCC tissues. Datasets from the same GEO platform were
merged into a comprehensive matrix during data preparation.
E2F5 mRNA expression levels were normalized and log-trans-
formed using the log2(x + 1) method. Batch effects were cor-
rected using statistical methods from R packages “limma” and
“sva”. The meta package (version 4.18-2) calculated standard-
ized mean difference (SMD) for LSCC genes, assessing differ-
ences between LSCC and non-LSCC samples to reveal E2F5’s
potential pathogenic molecular role in LSCC. Criteria for iden-
tifying highly expressed genes in LSCC samples were: 1) gene
appeared in > 3 independent studies; 2) SMD > 0; 3) 95% con-
fidence interval (CI) excluded 0. Spearman correlation analysis
identified E2F5-related co-expressed genes (CEGs), selected
based on: 1) co-expression with E2F5 in > 10 studies; 2) Spear-
man correlation coefficient r > 0.30; 3) P < 0.05. The cluster-
Profiler package performed functional annotation of intersecting
genes, with Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses exploring in-
volved biological processes and signaling pathways. Genes with
NETs-related scores > 1.5, retrieved via gencard for “NETs” or
“Neutrophil Extracellular Traps,” were included.

ITHC staining of internal institutional samples

The study collected 20 tissue samples from the People’s Hos-
pital of Lingshan County, including 10 LSCC tissues (laryn-
geal, hypopharyngeal, and oropharyngeal squamous cell carci-
nomas) and 10 non-LSCC control tissues (benign lesions such
as mucoceles, hemangiomas, and polyps). IHC staining fol-
lowed strict standard procedures using E2F5 polyclonal anti-
body (abs113308, absin™, 1:1,000) [14]. Post-staining, tissue
microarrays were reincubated, stained, dehydrated, and sealed
at room temperature. Staining intensity was graded as: 0 (no
staining, blue), 1 (weak staining, light yellow), 2 (moderate
staining, yellow-brown), and 3 (strong staining, dark brown).
Positive cell proportion was scored as: 0 (< 5%), 1 (5-25%),
2 (26-50%), 3 (51-75%), and 4 (> 75%). The final IHC score
was calculated by multiplying intensity and percentage scores
(range 0 - 12). Two pathologists independently assessed IHC
scores using this composite system and performed Wilcoxon
rank-sum tests between LSCC and adjacent non-cancerous tis-
sues. The study was approved by the Medical Ethics Commit-
tee (MEC) of the First Affiliated Hospital of Guangxi Medical
University (approval No. 2024-S621-01).

Role of E2FS5 in regulating LSCC proliferation

CRISPR screening data were obtained from the DepMap da-

tabase. To investigate E2F5’s role in LSCC cells, CRISPR
knockout screening was employed. The CERES algorithm cal-
culated dependency scores to determine E2F5’s criticality in
LSCC cell lines. Negative dependency scores indicated that
E2F5 knockout hindered cell line growth, supporting E2F5’s
functional necessity in LSCC [15].

Role of E2FS5 in immune cell interactions in LSCC

Spearman correlation analysis was performed to evaluate the
role of E2F5 (ENSG00000133740.11) in immune cell interac-
tions in LSCC. Immune cell infiltration was assessed using the
ssGSEA algorithm implemented in the GSVA R package (ver-
sion 1.46.0), with 24 immune cell-specific marker gene sets
derived from the Immunity publication [16].

E2FS ChIP-seq data

E2F5-related ChIP-seq data analysis utilized public datasets
from the Cistrome database [17]. Data were sourced from the
ENCODES3 project (ID: ENCSR709DRM 1, CistromeDB ID:
64302), involving Homo sapiens. Targeting E2F5 as the tran-
scription factor, the dataset was generated via ChIP-seq [18].
Data processing followed Cistrome’s standard workflow to
analyze E2F5 binding peaks in regulatory regions of NETs-re-
lated genes (e.g., SI00A8, S100A9, LCN2), validating E2F5’s
transcriptional regulatory role in LSCC.

Statistical analysis

To assess E2F5 protein expression differences in LSCC, the
Wilcoxon rank-sum test was used, with P <0.05 as the signifi-
cance criterion. A fixed-effects model calculated SMD when
heterogeneity was low (I? < 50%); otherwise, a random-effects
model was applied. The “pROC” package plotted ROC curves,
and STATA 18.0 generated sROC curves. AUC measured
E2F5 expression levels, with larger AUC indicating higher ex-
pression. The Begg test evaluated publication bias, with P >
0.05 indicating no bias.

Results

High E2FS expression in LSCC

Based on scRNA-seq, ST, and mRNA-level analyses, E2F5
exhibited significant high expression in LSCC epithelial cells
(Fig. 1¢). Concurrently, LSCC-related markers KRTS, KRT14,
TP63, and CDKN2A also showed high expression in these
epithelial cells (Fig. la, b). ST analysis further confirmed
sustained high E2F5 expression in LSCC tissues, with LSCC-
related genes KRTS5, KRT14, TP63, and CDKN2A similarly
exhibiting high expression at the tissue level (Fig. 2). mRNA-
level analysis revealed significant E2F5 overexpression, with
SMD =0.24, 95% CI=0.0309 - 0.448, SROC AUC =0.71, and
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Figure 1. High E2F5 expression in LSCC cells. (a) tSNE plot showing the distribution of different cell types in the single-cell
population. (b) LSCC cells labeled with KRT5, KRT14, TP63, and CDKN2A. (c) Distribution of E2F5 expression in single-cell RNA
sequencing data from LSCC. LSCC: laryngeal squamous cell carcinoma.

no significant heterogeneity among studies (Fig. 3). IHC stain-
ing of clinical samples further validated high E2F5 expression
in LSCC tissues (Fig. 4), with P = 7.2 x 10 and ROC AUC
=1 (Fig. 5).

E2F5 knockdown inhibits LSCC-related cell growth

E2F5 was found to be highly expressed in LSCC-related cell
lines BICR31, BICR16, SNU46, and SNU1076. Upon gene
knockdown to reduce E2F5 expression, growth in these cell lines
was significantly inhibited, with inhibition score < 0 (Fig. 6).

High E2FS expression alters immune cell enrichment

Correlation analysis indicated that T-helper cells, effector
memory T cells, and natural killer (NK) CD56bright cells
exhibited the strongest positive correlations with E2F5 ex-
pression (R = 0.251, 0.213, and 0.175, respectively). Con-
versely, neutrophils, Th17 cells, and immature dendritic cells
(DCs) showed significant negative correlations with E2F5
expression (R = -0.293, -0.260, and -0.221, respectively)
(Fig. 7a). Comparison of immune cell enrichment scores be-
tween high and low E2F5 expression groups revealed sig-
nificant differences in the immune microenvironment. In the
high E2F5 expression group, T-helper cells, effector mem-
ory T cells, and NK CDS56bright cells showed significantly

higher enrichment compared to the low expression group,
while neutrophils, Th17 cells, and immature DCs exhibited
significantly lower enrichment in the high E2F5 expression
group (Fig. 7b).

E2FS may influence LSCC via NETs

Based on the expression patterns of NETs-related markers
(S100A8, FUT4, LCN2, S100A9, and HSP3A), NETs-relat-
ed cell subpopulations were identified (Fig. 8a-c). Analysis
revealed significant E2F5 enrichment in NETs high-expres-
sion cells (Fig. 8d). ST analysis showed widespread NETs
distribution in tumor tissues (Fig. 9a), with NETs-related
markers SI00AS8, FUT4, LCN2, S100A9, and HSP3A exhib-
iting high expression across tissue regions (Fig. 9b). Integra-
tion and dimensionality reduction of data from three tissue
sections confirmed high E2F5 expression in NETs-enriched
regions (Fig. 9c). Further ChIP-seq analysis revealed multi-
ple binding peaks for E2F5, as a transcription factor, in the
gene regions of SI00A8, FUT4, LCN2, S100A9, and HSP3A
(Fig. 10).

Additionally, analysis of E2F5 co-expressed genes, LSCC
overexpressed genes, and genes with NETs-related scores >
1.5 (Fig. 11a) showed that these genes were primarily enriched
in the following functional pathways: in biological process
(BP), they were mainly involved in lymphocyte differentia-
tion, monocyte differentiation, negative regulation of leuko-
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Figure 3. High E2F5 expression in LSCC at the mRNA level. Forest plot of SMD and their 95% CI, showing the means, SD,
and SMD for each study’s experimental and control groups. Funnel plot from the Begg test to assess publication bias across
studies. sROC curve, presenting the evaluation of discrimination ability. Cl: confidence interval; LSCC: laryngeal squamous cell
carcinoma; SMD: standardized mean difference; sROC: summary receiver operating characteristic.

cyte activation, and T-cell differentiation; in cellular compo-
nent (CC), they were primarily associated with transcriptional
regulatory complexes, telomeric regions, chromosomal re-
gions, and Flemming bodies; in molecular function (MF), they
were mainly linked to helicase activity, NAD* nucleosidase/
ADP-ribose generation activity, NAD(P)" nucleosidase activ-

ity, and SH2 domain binding (Fig. 11b).

Discussion

This study, through integrating scRNA-seq, ST, mRNA ex-

l

l

non-LSCC

LSCC

Figure 4. High E2F5 expression in LSCC tissues at the protein level. The top panel shows immunohistochemical staining of
non-LSCC tissues, and the bottom panel shows immunohistochemical staining of LSCC tissues. LSCC: laryngeal squamous cell

carcinoma.
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pression profiling, and IHC validation, systematically revealed
the high expression characteristics of E2F5 in LSCC and its
potential association with NETs, providing new perspectives
for elucidating the molecular mechanisms and tumor microen-
vironment regulation in LSCC. As a member of the E2F fam-
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Figure 5. High E2F5 expression in LSCC tissues at the protein level, as determined by staining counts. (a) Differential expression
honeycomb plot. (b) ROC curve. LSCC: laryngeal squamous cell carcinoma; ROC: receiver operating characteristic.

ily, E2F5 plays a significant role in transcriptional regulation,
but its function in LSCC remains unclear. Utilizing CRISPR
knockout screening combined with the CERES algorithm,
this study found that E2F5 exhibits significant dependency in
LSCC cell line proliferation. Negative dependency scores in-
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Figure 6. Inhibition of LSCC-related cell lines upon E2F5 knockdown. LSCC: laryngeal squamous cell carcinoma.
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dicated that E2F5 knockout suppresses cell growth, supporting
a consistent pro-tumorigenic role for E2F5 in LSCC. This dual
role provides clues to the complex functions of E2F5 in LSCC,

warranting further investigation into its molecular mecha-
nisms. E2F5 showed significant high expression in LSCC
epithelial cells and NETs-related cells, suggesting that it not
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Figure 8. High expression of E2F5 in NETs in LSCC single-cell RNA sequencing. (a) tSNE subtype plot of NETs expression in
LSCC. (b) Expression plot of NETs-related indicators. (c) Overall tSNE plot of NETs expression in LSCC. (d) Expression of E2F5
in NETs. LSCC: laryngeal squamous cell carcinoma; NETs: neutrophil extracellular traps.
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only drives tumor cell proliferation but may also participate
in LSCC progression by regulating microenvironment-related
genes. Notably, high E2F5 expression was strongly correlated
with the enrichment of NETs hallmark genes (e.g., SI00AS,
S100A9, LCN2), and ChIP-seq analysis revealed E2F5 bind-
ing peaks in the regulatory regions of these genes, suggesting
that E2F5 may indirectly influence NETs-related gene expres-
sion as a transcription factor. This finding provides critical evi-
dence for E2F5°s role in the LSCC microenvironment, filling a
gap in related research.

High E2F5 expression may significantly reshape the LSCC
microenvironment by regulating NETs formation. NETSs, released
by neutrophils via NETosis, are enriched with DNA, histones, and
molecules such as SI00AS8, S100A9, and LCN2, playing roles not
only in antibacterial defense but also in supporting tumor progres-
sion by releasing pro-inflammatory factors, inducing immune sup-
pression, and promoting angiogenesis. This study found significant
E2F5 enrichment in NETs high-expression regions, with NETs
hallmark genes broadly upregulated in LSCC tissues, suggesting
that E2F5 may enhance NETs formation by transcriptionally regu-
lating genes like ST00A8/A9 and LCN2. This mechanism aligns
with prior studies, such as those showing S100A8/A9 amplify-

ing inflammatory responses via ROS and PAD4-mediated NETs
formation [11]. In LSCC, E2F5 may exacerbate tumor-associated
inflammation and immune evasion by activating NETs-related
signaling pathways (e.g., AMPK/Nrf2/HO-1) [11, 19]. ST results
further validated high E2F5 expression in NETs-enriched regions,
suggesting that NETs may act as an “amplifier”” of E2F5-mediated
tumor-promoting signals, promoting LSCC invasion and metasta-
sis by locally releasing pro-inflammatory factors and establishing
an immunosuppressive microenvironment. Additionally, the criti-
cal role of LCN2 in NETs [12] suggests that E2F5 may further en-
hance NETs’ tumor-promoting effects by regulating LCN2.
Functional enrichment analysis of E2F5 co-expressed
genes, LSCC overexpressed genes, and NETs-related genes
revealed E2F5’s molecular mechanisms in LSCC. In CC,
these genes were primarily enriched in transcriptional regu-
latory complexes, telomeric regions, chromosomal regions,
and Flemming bodies, with studies indicating that Flemming
body enrichment may support rapid LSCC cell proliferation by
regulating AURKB [20]. This suggests that E2F5 may drive
tumor progression by regulating gene transcription and chro-
matin organization. For instance, E2F5 may interact with the
RNA Pol II complex to upregulate tumor-promoting genes or
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promote cell immortalization by regulating TRF1 [21-23]. In
MEF, E2F5-related genes were associated with helicase activity,
NAD" nucleosidase/ADP-ribose generation activity, NAD(P)*
nucleosidase activity, and SH2 domain binding, indicating that
E2F5 may support tumor cell proliferation and survival by reg-
ulating DNA unwinding (e.g., MCM proteins [24]), DNA dam-
age repair (e.g., PARP1 [25]), and signal transduction (e.g.,
PI3K/AKT [26]). These functions may be linked to NETs for-
mation, with NAD" nucleosidase activity providing metabolic
support for NETosis [27] and SH2 domain binding potentially
activating pro-inflammatory signaling pathways [28], enhanc-
ing NETs’ tumor-promoting effects. E2F5 co-expressed genes
were also involved in lymphocyte differentiation and negative
regulation of leukocyte activation, suggesting that E2F5 may
suppress anti-tumor immunity via SH2 domain binding [29].
E2F5’s interactions with the immune microenvironment
underscore its multifaceted roles. ssGSEA analysis showed that
high E2F5 expression was positively correlated with Th cell, ef-
fector memory T cell, and NK CD56bright cell enrichment, but
negatively correlated with neutrophils, Th17 cells, and immature
DCs. These immune cell distribution differences may stem from
E2F5’s regulation of the microenvironment via NETs. NETs can
suppress anti-tumor immunity by releasing pro-inflammatory
factors like interleukin (IL)-8 [30] while promoting myeloid-
derived suppressor cell enrichment [31]. In LSCC, E2F5 may
inhibit CD8" T-cell activity [32] and promote immune evasion
by enhancing NETs formation. Low neutrophil enrichment may
be related to NETosis depletion [33]. Notably, the association
between high E2F5/NETs signatures and reduced neutrophil
infiltration supports a model in which persistent NETosis ex-

hausts local neutrophils, positioning neutrophil depletion as a
central mechanism rather than a secondary correlate. Enhanced
NAD" nucleosidase activity may further support the metabolic
demands of this E2F5-NETs axis, while enhanced NAD" nu-
cleosidase activity supports the E2F5-NETs axis in energy me-
tabolism. Enrichment of E2F5-related genes in transcriptional
regulatory complexes suggests that E2F5 may regulate immu-
nosuppressive factor expression, such as TGF-p, reinforcing an
immunosuppressive microenvironment.

Despite providing significant evidence, this study has
limitations. Direct regulation of NETs hallmark genes by
E2F5 requires validation via ChIP-qPCR, and the mecha-
nisms of E2F5-NETs signaling pathways (e.g., AMPK/Nrf2/
HO-1) need further exploration. E2F5’s dual roles in differ-
ent cell lines may be linked to molecular subtypes (e.g., TP53
mutations), requiring multi-omics analysis. As this study was
based on in vitro cell lines and tissue samples, the functions of
E2F5 and NETs in LSCC in vivo models require animal stud-
ies for validation. Future research should explore the therapeu-
tic potential of E2F5 inhibitors or NETs-targeted drugs (e.g.,
Paquinimod), which may improve LSCC prognosis when com-
bined with immune checkpoint inhibitor (ICI). For instance,
Paquinimod significantly reduces inflammation by inhibiting
S100A8/A9 [11], suggesting its potential application in LSCC.

Conclusion

In summary, this study is the first to reveal E2F5’s high ex-
pression in LSCC and its potential interaction with NETs,
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demonstrating that E2F5 may promote tumor proliferation and
microenvironment remodeling through transcriptional regula-
tion, chromatin organization, and NAD*-related functions. The
identification of the E2F5-NETs axis suggests a possible ther-
apeutic avenue for LSCC, but further in vivo and functional
studies are required to substantiate its clinical relevance.
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